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Abstract

Simulation of large molecular structures and their interactions has become a

major component of modern biomolecular research. Methods to simulate these

type of molecules span a wide array of resolutions, from all atom molecular dy-

namics to model interaction energetics to systems of linear equations to evaluate

population kinetics. In recent years, there has been an acceleration of molecular

structural information production, primarily from x-ray crystallography and elec-

tron microscopy. This data has provided modelers the ability to produce better

representations of these molecular structures.

The purpose of this research is to take advantage of this information to de-

velop multi-resolution models for the analysis of large molecule motions and in-

teractions. Our methodology focuses on the use of structural models of a given

biological system and simulating the molecules using different conditions (num-

ber or ratio of molecules being simulated) and constraints (rigid or semi-flexible

models). We combine computational geometry and statistical techniques to per-

form efficient structural modeling and simulation.

Our goal is to utilize our methods to analyze the effect of geometry on

molecule interactions, e.g., shape of packed structures or influences of steric hin-
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drance caused by interacting molecules. We focus our work on larger molecu-

lar systems, both in size of the molecular structures and number of interacting

molecules. The focus of our evaluation is the human allergic immune response.

The immune response is triggered by cell surface molecular aggregation of anti-

bodies via an antigen. With our analysis we gain insight into how different aller-

gen geometries affect the size and shape of aggregate structures that form on the

cell surface.

We perform a multi-resolution analysis of our structures and model the prob-

lem in two ways, a lower resolution rigid body representation which can model

the aggregation process, and a higher resolution flexible model which can be used

to fit structural experimental data. In the lower resolution work, we develop

methods to geometrically model, simulate and analyze antibody aggregation. We

show our technique handles the large size and number of molecules involved in

aggregation, and we study the impact of model resolution on simulations of geo-

metric structures. In the higher resolution work, we introduce methods to model

and fit molecular structures into electron microscopy datasets (20Å - 40Å resolu-

tion). We use Gaussian mixture models to describe molecular systems with high

flexibility thus enabling the generation of conformations that fit an input tomo-

graphic tilt series, a set of 2D images of a 3D molecule taken at a variety of angles.

We also apply our method to experimental data, fitting a structure imaged using

cryo electron microscopy tomography.
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Chapter 1

Introduction

Structural simulation of large molecule interactions has become a major compo-

nent of modern biomolecular research. One application area of simulations is

modeling molecular assembly, the process in which a group of molecules adopt a

functional macromolecular arrangement. The assembled structure is composed of

a series of molecules bound together to create a functional component of a given

biochemical process. The structures of these assemblies are dependent on sev-

eral features of the individual molecules including size, structure/conformation,

and valency (number of binding interfaces). These features determine the size,

complexity and functionality of the assembled structure.

In this work, our focus is on the aggregation of antibodies and allergens, an

assembly process which triggers the human allergy immune response [100]. This

process occurs on the cell surface of key mediators of the allergic reaction, mast

cells and basophils, in their response to environmental changes. IgE antibodies,

produced by the lymph nodes to identify foreign threats to the body, are found

bound to FcεRI cell surface receptors, priming said cells for activation [100]. When

an allergen (antigen) is present, the IgE antibodies bind to the antigen and start
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to form aggregate structures (crosslink). This aggregation process initiates a sig-

naling cascade that propagates inside the cell, resulting in degranulation. De-

granulation is the process where immune mediators are released from the cell; in

the case of mast cells this includes histamine, serotonin, and leukotrienes among

other molecules. These immune mediators produce an increase in local vascular

permeability and induce an inflammatory response [100, 2]. In most cases, the

typical allergic response includes a runny nose, irritated skin or itchy eyes, but in

a hypersensitive person this immune response is severe, resulting in anaphylaxis

and possible death. It is believed that the shape, size and valency of an allergen

impact the strength of the response [1]. Figure 1.1 displays a series of allergens,

which vary greatly in structure and valency, but still activate the same signaling

pathway.

Computational simulations of molecular interactions can provide insights into

the behaviors of biomolecules at resolutions not possible from experiment. Tradi-

tional approaches to simulate large molecular structures and interactions include

include Molecular Dynamics (MD) [103, 102] and Monte Carlo (MC) [37, 22, 105]

methods. Large-scale MD simulations (millions of atoms) have been essential in

elucidating viral capsid assemblies, ribosome activity, and bioenergy systems [94].

MC methods have been used to study amyloid aggregation [68] and ion channels

[16].

Unfortunately, MD and MC simulations have limitations when modeling

molecular interactions. MD simulations are often computationally intensive, can

only provide simulation times of up to a few microseconds, which is insufficient

for processes which take place on longer time scales, and are dependent on force

field parameterization [12]. MC simulations produce an ensemble of represen-

tative conformations, but do not provide information about time directly due

to reduced physical complexity and may not produce a complete representation

2
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Figure 1.1: Various antigen/allergen structures that effectively signal for the al-
lergic immune response. Note the differences in sizes, valency and binding site
topography (colored areas). a.) Synthetic, bivalent antigen (Dct)2-cys. b.) Syn-
thetic trivalent antigen DF3. c.) Birch pollen allergen Bet v 1. d.) Cedar pollen
(Juniper) allergen Jun a 1. e.) The common peanut allergen Ara h 2. f.) The com-
mon shellfish allergen (shrimp tropomyosin) Pen a 1.

of the conformational space [92]. New methods are being developed which fo-

cus on producing alternative ways to simulate these molecular systems to over-

come some of these challenges. There are two main efforts to study these sys-

tems with more molecules and at longer timescales: “modified” MD methods (in-

cluding steered MD and coarse-grained MD) [60, 94], and robotic-inspired meth-

ods [3]. These methods have been applied to single molecule folding/unfolding

[7, 117, 115, 116] and small molecule interactions [112, 11].

The purpose of this research is to extend existing robotics-inspired methods

by developing models at multiple resolutions for simulation and analysis of large

molecule motion and interaction. Our methodology focuses on the use of struc-
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tural models of a given biological system and simulating molecules using dif-

ferent conditions (number/ratio of molecules being simulated) and constraints

(rigid and semi-flexible models). We combine computational geometry and statis-

tical techniques to generate structural models of biological data for more efficient

simulation. We increase both the breath of analysis and computational efficiency

by modeling the system at multiple levels of detail. Figure 1.2 describes how our

methods are used to model molecular structures.

Figure 1.2: Low resolution modeling of our molecular system. a.) Modeling be-
gins with all atom structures of molecules involved in the interaction. In this ex-
ample we model IgE and antigen DF3. b.) All atom models are used to construct
lower-resolution models. c.) We simulate the interaction of the lower-resolution
model using a variety of conditions and constraints dependent on the type of sim-
ulation. d.) Simulation with the low-resolution models results in aggregate struc-
tures that can be analyzed. e.) All-atom reconstruction is performed to recreate the
aggregate structures. f.) More detailed analysis of the structures can now be per-
formed on the all-atom reconstruction. (Note: Ribbon format shown representing
all-atom model for visual clarity)

To evaluate our methods, we focused on modeling the molecular basis of

the allergic response in humans, specifically, how allergen structure and va-

lency impact antibody aggregation. Methods introduced in our preliminary work

[84, 81, 82, 80] include model construction techniques and methods for simulation

and analysis of large molecular systems. We then extended our work to include

articulated body modeling and aggregate conformation fitting [83, 79].
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1.1 Research Objective

The objective of this research is to develop methods to efficiently model structures

and simulate interactions of biomolecular systems. Our goal is to increase the un-

derstanding of large molecular systems by developing multi-resolution models to

learn about the impact of structure on these systems. Figure 1.3 outlines the three

levels of detail, i.e., Degrees Of Freedom (DOF) we choose to model and incor-

porate in to our methods. The highest level of detail is all atom modeling, where

explicit atom position, properties and bonds are maintained by the model. We use

flexible modeling for a medium level of detail, where simplified models still cap-

ture a majority of the molecular flexibility and occupied volume of a molecule. At

the lowest level of detail, we perform rigid body modeling which only captures

the occupied volume of a static state.

Figure 1.3: Example levels of complexity in our modeling of molecular systems.
a.) All atom models represent the highest level of complexity available, and they
are used as a basis for lower-resolution models and for evaluating biological va-
lidity. b.) A flexible model represents a mid-level of complexity, enabling the
modeling of different conformations of a given molecule. c.) At the lowest level of
complexity, rigid body models are simple but efficiently model a static molecular
structure and occupied volume.

5



www.manaraa.com

Chapter 1. Introduction

We achieved our objectives by combining computational geometry techniques

and statistical models to efficiently simulate the interactions of large molecules.

Our methods focus on molecular conformation determination, the generation and

evaluation of candidate structures of a given system. To evaluate our methods,

we used biological data collected from experiments pertaining to the human al-

lergen immune response. Our work provides insights into how the size/shape of

aggregate structures that are formed on the cell surface. In order to derive these

insights, we developed two simulations, the first using 3D models of biomolecules

to perform complex binding/aggregation, and the second modeling the molecules

with flexibility to fit experimentally imaged aggregate structures.

For molecular aggregation, we simulate molecular interaction using a Monte

Carlo approach with relaxed constraints and analyze the resulting aggregate

structures [84, 81, 82, 45, 80, 46]. This method of simulation allows us to evalu-

ate how aggregation is affected by allergen dose, shape, size and valency. We also

developed a novel implementation of Rule-Based Modeling (RBM) that allowed

us to analyze steric effects between different allergen models. Results from these

simulations provide quantification of the impact of reduced model resolution.

For flexible fitting, we use a Gaussian Mixture Model (GMM) to model the

structure of the molecule and fit it to a dataset collected using electron microscopy

[83, 79]. This method of simulation allows us to determine actual structures that

have been imaged in a microscope, for example aggregate structures.

There is a trade-off between speed and accuracy when comparing all-atom

simulations to methods that utilize coarse-graining or reduced-resolution mod-

eling. MD based methods with all-atom representations and detailed atom po-

tentials are accurate, but slow. Our methods, based on molecular geometry and

simplified interaction descriptions, are less accurate but more computationally ef-

ficient.
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1.2 Contributions

This research focuses on the development of simulation and analysis tools for

modeling the structures and interactions of large molecular systems. We have

developed two simulations, the first simulating complex binding/aggregation of

rigid body models, and the second modeling a more physical, semi-flexible struc-

tures to fit experimental data.

In our preliminary work on molecular aggregation, we focused on developing

a method for simulation and analysis of molecular aggregation [84, 81, 82]. With

this work we were able to study IgE antibody aggregate formation. Where exper-

imental techniques only report proximity of clustered receptors, our simulations

were able to provide unique insights into the aggregation process by classifying

the most common geometry associated with receptor aggregates [84]. We have

extended this work to evaluate the impact of antigen valency on IgE aggregate

size and topography [81].

We have also worked on investigating how model resolution impacts simula-

tion accuracy and efficiency [82]. From that work we were able to quantify and

potentially account for the impacts of model simplification. To investigate this

connection deeper, we developed a novel implementation of Rule-Based Model-

ing (RBM) that encodes molecular geometry into the rules [45, 80, 46]. In this

work, we began with exploring how RBM can be designed to incorporate ge-

ometry into biochemical models [45]. We did this by analyzing RBMs for dif-

ferent antigen geometries and resolutions, and determined how steric effects be-

tween allergen binding regions vary with molecular geometry and model reso-

lution. We extended this work with an evaluation of how RBM can complement

other computational methods that explicitly represent molecular geometry [46].

This work was a unique integration of geometric rule-based modeling and three-
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dimensional simulations, showing differences in model resolution/quality of a

given method can be quantified using another method. In the capstone of this

project, we studied the impact of model resolution on simulations of geometric

structures using our Monte Carlo simulation and RBM [80]. In this work we eval-

uated aggregate clustering and were able to reproduce experimental data. Our

study of the aggregation of Pen a 1 (the common shrimp allergen) was considered

a novel contribution to the allergen literature [46].

In the second body of work, we focused on developing a method to fit images

of molecular aggregates generated using Cryogenic Electron Tomography (Cryo

ET) [83]. Cryo ET is a method to capture an ordered set of images of a molecular

structure, known as a tilt series, and use those images to reconstruct a 3D model

of the molecule. Issues arise fitting existing models to reconstructions due to fac-

tors including reconstruction distortions and lack of resolution. To address these

issues, in this work we show we can fit tilt series directly, avoiding reconstruction

distortion fitting, using a GMM description based off of atomic models and are

capable of representing low resolution data. We then extend the work by modi-

fying the optimization method and fitting more complex structures. This work is

the first of its kind in that the focus of the method is fitting a tilt series directly as

opposed to a volumetric reconstruction of a tilt series.

The body of the research presented in this document is based on the following

publications:

• Kasra Manavi, Bridget S. Wilson, and Lydia Tapia. Simulation and anal-

ysis of antibody aggregation on cell surfaces using motion planning and

graph analysis. In Proc. of the Association for Computing Machinery Con-

ference on Bioinformatics, Computational Biology and Biomedicine (ACM-

BCB), August 2012.
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• Kasra Manavi, Alan Kuntz, and Lydia Tapia. Geometrical insights into the

process of antibody aggregation. In Proc. of the Association for the Ad-

vancement of Artificial Intelligence Conference Workshop on Artificial Intel-

ligence and Robotics Methods in Computational Biology (AAAI-AIRMCB),

July 2013.

• Kasra Manavi and Lydia Tapia. Influence of model resolution on antibody

aggregation simulations. In Proc. of the Robotics Science and Systems Work-

shop on Robotics Methods for Structural and Dynamic Modeling of Molec-

ular Systems (RSS-RMMS), July 2014.

• Brittany Hoard, Bruna Jacobson, Kasra Manavi and Lydia Tapia. Extending

Rule-Based Methods to Model Molecular Geometry, In Proc. of the Institute

of Electrical and Electronics Engineers International Conference on Bioinfor-

matics and Biomedicine (IEEE-BIBM), November 2015.

• Kasra Manavi, Bruna Jacobson, Brittany Hoard, and Lydia Tapia. Influ-

ence of model resolution on geometric simulations of antibody aggregation.

Robotica, May 2016.

• Brittany Hoard, Bruna Jacobson, Kasra Manavi and Lydia Tapia. Extending

Rule-Based Methods to Model Molecular Geometry and 3D Model Resolu-

tion. BMC Systems Biology, August 2016

• Gaussian Mixture Models for Fitting Tomographic Tilt Series. U.S. Provi-

sional Patent filed. Inventors: Lydia Tapia, Kasra Manavi, Bridget Wilson,

and Niels Volkmann, July 2017

• Kasra Manavi, Sahba Tashakkori and Lydia Tapia. Gaussian mixture mod-

els with constrained flexibility for fitting tomographic tilt series. In Proc.

of the ACM-BCB Computational Structural Biology Workshop (CSBW), Au-

gust 2017.
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• Kasra Manavi et. al., Fitting Tomographic Tilt Series Using Gaussian Mixture

Models and Genetic Algorithm Optimization, In Preparation.

1.3 Outline

A summary of related work in the field is presented in Chapter 2. In Chapter 3 we

provide an overview of rigid body modeling of the molecular aggregate problem.

We the move on the a discussion of the methods we developed to perform flexible

model construction and fitting in Chapter 4. Conclusions and future work are

discussed in Chapter 5.
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Related Work

In our work, we focus on the structural simulation of molecular aggregation. We

do this with two goals, one to understand the aggregation process and the other

to determine aggregate structures. This chapter gives necessary background from

three diverse fields, reviewing areas of research related to our work. We start

with a discussion on methods for simulating molecular motion and aggregation

in Section 2.1. From there we move on to a description of human allergy immune

response resulting from IgE antibody aggregation in Section 2.2. We move on to

Section 2.3 discussing methods for molecular structure determination. We con-

clude with Section 2.4 introducing the molecules pertinent to our IgE antibody

aggregation simulations.

2.1 Molecular Motion Simulation

Aggregation simulations pose special challenges due to their large sizes (both

large molecules and large number of interacting molecules) and long timescales.

Large simulations are often sped up by introducing constraints into the system
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that remove fast degrees of freedom, e.g., static bond length [103]. Rigid body

molecules are ultimately constrained: all torsions, angles and bonds are fixed at

their equilibrium distances [103]. This allows for an increase of the basic 1 fem-

tosecond timestep in dynamics simulation [103, 102]. Monte Carlo studies allow

even larger simulation steps resulting in significant speedup but can only provide

physically relevant dynamics in certain (special) cases [37, 22, 105].

Coarse graining is another way to accelerate simulation by reducing the cost

of energy/force calculations. In coarse graining, molecules or molecular subunits

can be represented by charged spheres [70, 69, 58] or point masses [89]. These

coarse graining approaches work well for reducing the complexity of the molecu-

lar representation, allowing for dynamics studies that can reveal the kinetic factors

impacting assembly, but can have difficulty providing insights into questions that

require more geometric details. Other methods that do not reduce the molecu-

lar geometry can yield detailed pictures of kinetic factors, steric hindrance and

non-specific binding [43, 52].

In order to preserve structural information, other studies have incorporated

polygon-based models of molecular surfaces in order to simulate interactions

[76, 20, 21, 40, 77, 120]. These papers highlight the recent push to gain a more de-

tailed understanding of the role of biomolecular surfaces during interaction mod-

eling [90]. Surface representations of molecules have been used to study protein

shape and model cavities, e.g., tunnels and clefts [76, 20, 21, 77, 120]. Even the

prediction of molecular binding specificity and protein docking has been shown

to benefit from the use of polygon-based models [20, 40]. Large scale assembly

processes have been shown to benefit from easy and understandable visualiza-

tion [35]. Another approach to reduce computational cost while maintaining crit-

ical structural details has been the advent of multi-scale methods (using a com-

bination of low and high resolution data) [41, 109, 125]. For example, models of

12
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membrane-bound molecules are studied with three methods in [125]: molecular

dynamics to study the inter-domain flexibility, Monte Carlo simulations to study

multi-domain motion and lattice simulations to study clustering.

2.1.1 Design/Prediction of Assembled Molecule Structures

Engineering proteins to perform specific tasks include the design of interfaces

between proteins and small molecules [66, 6] and designing protein assemblies

[62]. Our work is more related to the latter, focusing on molecular aggregation

and structure of assemblies. Methods for designing protein-based assemblies

come in two forms: stochastic (resulting in irregular structures with probability-

derived attributes), and deterministic (producing exactly specified geometric fea-

tures) [62]. A majority of the computational design methods have focused on

interface construction [49, 53], but new methods go further and fully design self-

assembling molecules [59]. These methods are similar in that they generally start

out performing rigid body docking followed by iterative design/minimization

steps to refine the interface. Tools such as Rosetta [67] are becoming increasingly

powerful in enabling the design of these molecular structures.

A wide ranging set of fields, from medicine to industrial manufacturing, stand

to benefit from the use of computational methods to determine possible geomet-

ric structures of assembled molecules. Many methods use lattice models with

force fields and focus on the interactions of proteins with both denatured [18]

and native [130] conformations. A coarse grained MD-based approach to study

polymer-drug aggregation was done in [93].
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2.1.2 Robotics Methods for Molecular Simulation

Methods which utilize robotic motion planning for molecular simulations have

been reviewed in [3]. These methods focus on using the notion of configuration

space (C-space) [74], the state space of all possible configurations a robot can at-

tain. For molecular simulations, molecular structures are viewed as robots. A

configuration, c, defines a pose of the robot/molecule that lies in the C-space , C,

the set of all possible configurations the robot can take. There may be restricted

areas of the space due to collision or other constraints that are included in the

subset Cobst. For molecules, these restricted areas are also delineated by energy

of the configuration. All remaining configurations are in the subset C f ree which

represents feasible poses. From this perspective of C-space, the molecular simu-

lation problem becomes the motion planning problem of finding a trajectory that

is fully contained in C f ree that connects start and goal configurations. To lever-

age C-space, sampling-based planners sample a set of configurations from the

C-space and uses them to provide a characterization of the C-space.

Two major motion planning techniques have been derived from the C-

space formalization, Probabilistic Roadmap Methods (PRMs) [56] and Rapidly-

exploring Random Trees (RRTs) [64]. In PRMs, sample configurations are drawn

from C-space and those in C f ree are stored in a roadmap (graph) used to find

trajectories. In RRTs, a start configuration is used as the root of an iteratively

constructed tree that is grown explore C-space. Motion planning methods have

been used to study protein folding [7, 117, 116], RNA folding [115], and ligand

(small molecule) binding [112, 11]. The extensions required for applying motion

planning algorithms into molecular simulations include molecular representation,

collision detection and energy calculation.
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A variant of RRT, Manhattan-Like RRT (ML-RRT) [25], has been proposed for

disassembly path planning, the problem of computing motions to disassemble

objects. This is done by decoupling the motions of different parts of the system.

These methods have been applied to receptor-ligand complexes [24] focusing on

the exit problem, finding a trajectory to remove a bound ligand (small molecule)

from a receptor and determine which parts of the molecules need to move to find

a solution [24]. The combination of decoupled motions and C-space exploration

was able to reduce computation time compared to RRT and RRT variants.

Other protein simulation methods focus on multiscale modeling or utilizing

prior constraints. In [4], Normal Mode Analysis (NMA) of a coarse grained elastic

network is used to compute large-scale motions of biomolecules. Normal modes,

eigenvectors of the Hessian matrix, are used to predict the low frequency modes

of motions of a given molecular structure. RRT is used to explore the linear

combinations of modes generated from the sampled configuration. In [98], the

authors present a generalized setup for including prior information into RRTs.

The method utilizes prior information including atom distances, helix line fit, and

secondary structure RMSD to bias the path towards external constraints. It was

shown that partial information can improve sampling-based method performance

by reducing the C-space size.

2.2 IgE Antibody Aggregation

The human allergy immune response is initiated when cell surface bound IgE-

FcεRIs crosslink (bind together via antigen), forming clusters which signal the cell

for degranulation [100]. Experimental studies using nanoparticles have shown

antigen size and valency (number of antigen binding sites) impact degranula-

tion of rat basophilic leukemia cells [50]. Spatiotemporal analysis of IgE aggre-
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gation has been done using nanoscale imaging and motion tracking techniques

[128, 9, 123]. Methods to analyze clustering of micrograph probes were developed

in [128], including Ripley and Hopkins statistic calculations. These calculations

use the locations of static gold nanoparticle labeled IgE-FcεRI which have been

imaged using transmission electron microscopy [123]. Spatial clustering analysis

of IgE-FcεRI has been done using methods from [128] as well as hierarchical clus-

tering techniques to quantify the numbers and sizes of clusters [27]. Tracking of

quantum dot labeled IgE-FcεRI has determined temporal information such as dif-

fusion rates [9]. While these experimental methods have been able to measure at-

tributes about receptor dynamics, they do not retain information about the aggre-

gate binding patterns. Because of this, distinguishing linked (bound) molecules

from simply proximal receptors is challenging.

Rule-based modeling has been used to model antibody-antigen interactions.

A kinetic rule-based version of the Trivalent Antigens and Bivalent Receptors

(TLBR) system which accounted for two types of cycles (dimers and heximers)

was introduced in [127]. This method was based on a previous equilibrium theory

model [36]. This rule-based model was extended to consider aggregate structure

constraints [89]. In our prior work, we developed a rule-based model which con-

siders steric constraints, but using a different antigen [46]. This was achieved by

rules that considered molecular geometry.
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2.3 Electron Microscopy for Molecular Structure De-

termination

Fitting a known structure to experimentally imaged molecules is critical to un-

derstanding molecular conformations. In this section we review Cryo ET and the

molecular replacement problem (Section 2.3.1). We then review more specific as-

pects of Cryo ET that we focus on in our work (Section 2.3.2).

2.3.1 Cryo Electron Microscopy

Electron Microscopy (EM) has become an essential part of understanding cellular

function [33, 65]. EM is performed by preparing a sample and placing it into

an electron microscope for imaging. This sample is exposed to an electron beam

which is collected via a detector, producing an image of the sample. In this image,

the intensity of the pixel is proportional to the density of the 3D object.

There are various methods of EM [33], including Cryo ET [32]. In Cryo ET,

preparation includes flash freezing the sample, locking the object of interest in

vitreous (disordered) ice. The sample is then rotated about an axis and imaged,

producing an ordered set of images from different perspectives called a tilt series.

The tilt series is processed using image analysis techniques to perform volume

reconstruction of the structure. This volume is then typically fit using structural

models to determine the molecular conformation.

Sample Preparation and Imaging

Processing a sample begins with the preparation of a sample and its placement

on an EM grid [114]. An EM grid is a fine-mesh copper disk with a thin layer
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of carbon added to the top surface. The disk mesh granularity and carbon layer

pattern used are dependent on the type of sample being imaged, e.g., molecular

structure size and collection technique. Once the sample is placed on the grid, the

sample is then frozen in place. This is done by quickly placing the grid into a cold

environment, typically performed by plunging the grid into liquid ethane.

At this point, the sample is prepared for imaging using an electron microscope.

There are two main methods for imaging a given sample, untilted and tilted imag-

ing [33, 32]. In untilted imaging, the sample is placed in a microscope and exposed

to an electron beam to produce an image. This results in images being collected

in an unordered fashion, i.e., the relationship between perspectives needs to be

inferred from the data as a post process. In tilted imaging, a sample is placed in

the microscope and imaged, then rotated about an axis and imaged again until a

series of images is collected. Tilted imaging produces images where the relation-

ship between perspectives is known due to the ordered nature of the collection

process, i.e., the transformation matrices between perspectives about an axis of

rotation are know.

Volume Reconstruction and Fitting

The volume reconstruction and fitting process is outlined in Figure 2.1. If the

sample is processed using untilted imaging, analysis of images is performed using

single particle reconstruction techniques [33]. This process begins with picking a

set of particles from the set of images produced from the microscope (the more

particles the better). Once this set of particles has been picked, the images are

aligned and averaged to produce a clearer view from a given perspective. These

different perspectives are then combined to create a 3D volume of the structure

using methods such as random canonical tilt or common lines [33].
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Figure 2.1: A diagram outlining the process of reconstruction and fitting of EM
data. (Far Left) Particles are picked from the dataset produced by the electron
microscope. (Center Left) Picked particles (red/left) area are aligned / averaged
/ processed to produce projections for reconstruction (blue/right). (Center Right)
Processed projections are used to reconstruction a 3D volume of the structure.
(Far Right) Fitting techniques are used to fit atomic model to 3D reconstruction.

If the sample was processed using a tilted imaging solution, tomography can

be used to reconstruct a volume [32]. Tomography is a technique that utilizes

a series of images to produce a 3D reconstruction of the underlying structure.

Images are captured in an ordered fashion (e.g., single/dual axis tilt series) and

are combined to produce a 3D density map.

EM and Cryo ET are becoming cornerstones of modern structural biology re-

search, but several challenges remain, including reconstruction evaluation and

model fitting [42].

Depending on the type of sample, density map reconstruction can be challeng-

ing for both single particle and tomographic methods. This step, required before

an atomic model can be fit, can suffer from issues including distortions in image

alignment and the missing wedge problem [75]. During single particle reconstruc-

tion, images of a dataset are clustered and aligned to produce an averaged image

from a particular perspective. The quality of the clustering/alignment results are

highly dependent on the size of the input dataset and image quality. Distortions
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in a given perspective occur when not enough images are gathered to properly

describe the sample from the given perspective. When performing tomographic

reconstruction of a tilt series, challenges arise due to the missing wedge problem.

This problem is due to the nature of the image collection method and how it has

the potential to miss features of the molecule due to the limited angle range. A set

of perspectives are captured by rotating the sample about an axis, but if the angle

range is narrow, portions of the sample are not imaged. This results in a loss of

information about the sample and reconstructions are elongated perpendicularly

to the axis of rotation.

In addition to the challenge of reconstruction, fitting structural models, typi-

cally all-atom structures, to reconstructed density maps can be difficult. Resolu-

tion of a density map is important to the type of fitting technique used. At high

resolution (< 10 Å), all-atom fitting techniques work well, but lower resolutions

(20-40 Å) still pose a challenge to existing methods due to a lack of detail [121].

This is particularly true for larger asymmetric molecular systems that are typically

imaged at lower resolutions.

2.3.2 Projection and Tomography

In this section we review work related to projection matching, tomographic recon-

struction, and antibody structures generated using EM.

Projection Matching

Several computational geometry methods have been used to model volumes from

projection information and vice versa [13, 101, 88, 124]. For example, the optimal

packing/covering problems have been solved using phi-functions developed to
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evaluate the interaction of geometric objects called phi-objects [13]. Phi-functions

take in two phi-object positions as input and returns a value inversely related to

the amount overlap between the objects (negative if they overlap, zero if they

touch, and positive if they are separated). Another example is shadow art, the

idea of occluding light from a source to produce an image. One such method uses

light sources and a desired shadow art as input and produces a sculpture that

is capable of generating the scene [88]. This work has been expanded to model

shadow theater where shadow art is generated by the pose of a single or multi-

ple performance artists [124]. Another similar method turns 2D silhouettes from

different perspectives into 3D models [101].

EM and Structure Determination

Integrating comparative modeling and EM data to produce atomic models is re-

viewed in [119]. Fitting structures to reconstructed 3D EM data can be broken

down into two main methodologies, rigid and flexible [29]. Most six degree of

freedom rigid fitting is done using methods like geometric techniques [19], GMMs

[57], or Zernike descriptors [28]. Flexible fitting focuses on using molecular sim-

ulation methods [108, 72], robotic motion planning techniques [5], as well as sta-

tistical techniques [107, 26] to determine candidate conformations. GMMs have

been applied to other aspects of EM analysis, including reconstruction of single

particle imaging [55] and structural dynamic evaluation [54].

Antibody Structure Determination

In our work, we focus our analysis on the IgE antibody, responsible for the human

allergic immune response. Immunoglobulin (Ig) proteins have been determined

to be highly flexible and can form asymmetrical structures [106, 17]. The structures
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obtained from X-ray diffraction analysis show that IgG, another member of Ig pro-

tein family, is composed of three major structural subunits: two identical binding

arms (Fab arms) and a membrane bound constant domain [104]. Since antibodies

are known to have very flexible and dynamic structures, populations of differ-

ent conformations have been found to co-exist in images [129, 118]. Therefore,

commonly used methods such as X-ray crystallography, which rely on molecular

averaging, often do not reflect protein dynamics and flexibility [131]. In contrast,

EM can be used to reconstruct unique and independent samples [104].

2.4 Molecular Structures

In our work, we focus on the human allergy immune response resulting from

the aggregation of IgE antibodies via antigen. An all-atom structure of the IgE-

FcεRI complex was initially described in [78]. The IgE structure, composed of

both heavy and light chains, is modeled bound to the α-subunit of the cell sur-

face receptor FcεRI as shown in Figure 2.2. The receptor complex model was

constructed using available molecular structures from the Protein Data Bank [14]

(PDBs: 1OAU, 2VWE, 1O0V, 1F6A) and is composed of 1,709 amino acids (13,477

atoms). The Y-shaped structure has 3 major regions, the lower region referred to

as the constant domain and the upper regions called Fab arms. Antigen bind to

the antibody at the HyperVariable (HV) regions of IgE located at the end of the

Fab arms.

Much work has been done to study synthetic antigens that initiate an immune

response. Synthetic antigens such as the bivalent (Dct)2-cys (DCT2), trivalent DF3,

and multivalent DNP-BSAn have been constructed to study receptor aggregation

[97, 111, 126]. The structures of these antigens are well known and documented.

All these structures use DNP, a hapten used in molecular biology to bind to DNP-
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Figure 2.2: The molecular structure of IgE antibody/cell surface receptor complex.
The α-subunit of the FcεRI receptor (blue) has a transmembrane domain keeping it
tethered to the cell surface. The antibody (tan) is tightly bound to the extracellular
region of the receptor. Two (2) antigen binding sites are located at the ends of the
antibody arms (green), resulting in a bivalent molecule.

specific IgE antibodies, resulting in model systems with high immunogenicity.

Each antigen binding site is comprised of a DNP linker that has been attached to

the molecular structure.

In our preliminary experiments we use models of antigen DCT2 and DF3.

DCT2 is a synthetic bivalent antigen (Figure 2.3) with 2 binding sites on oppo-

site sides of the molecule. DF3 is another synthetic antigen (Figure 4.11) with 3

binding sites.
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Figure 2.3: The molecular structure of synthetic antigen DCT2 (tan). The molecule
is symmetric and the DNP linkers (blue and red) are attached at both ends, creating
a bivalent antigen.

These antigens have reduced valency compared to DNP-BSAn, a synthetic

multi-valent (n being the valency) antigen used to study receptor aggregation.

The number of DNP linkers bound to BSAn can vary (2-25 binding sites). How-

ever, there is no control of spatial distribution of the binding sites on BSAn, so

there is no guarantee of binding site uniformity. On the other hand, DCT2 and

DF3 have well defined structures with known binding site locations, making them

easier to model.

Figure 2.4: The molecular structure of synthetic antigen DF3 (tan). The fibritin
trimer has 3 DNP linkers (red, green and blue) attached to the N-termini of trimer
subunit.
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The molecular structure of antigen DCT2 was generated from the PubChem

open chemistry database (SID:135154086), and is composed of 78 atoms. DF3 was

generated by starting with the base fibritin trimer (PDB:1RFO) [38] and adding

flexible DNP linkers (about 1 nm in length) to the N-terminus of each of the three

subunits. DF3 is comprised of 81 amino acids with 1,365 atoms total.

Synthetic antigen allowed us to probe the system with ideal models, but stud-

ies of natural allergens initiating degranulation have more pertinence to human

studies. One allergen that has been of particular interest is the common shrimp

allergen, Pen a 1. The immune response is triggered by the shrimp tropomyosin

molecule, a 40 nm double-stranded coiled coil structure, (Figure 2.5), which

crosslinks IgE antibodies. The allergen has been predicted to have 5 binding re-

gions on each of the strands of the coiled coil [10] and a total of 16-18 binding sites

[51, 99]. Structural models for shrimp tropomyosin were available in the Protein

Data Bank (PDB:1C1G) [122] and in the Structural Database of Allergenic Proteins

(SDAP Model: #284) [10]. The Pen a 1 model used was composed of 568 amino

acids totaling 4,580 atoms.

Figure 2.5: The molecular structure of Pen a 1, a common shrimp allergen (tan).
A total of 16-18 binding sites (various colors) are located in 5 regions on the coiled
coil structure.
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Rigid Body Molecular Modeling

Our work developing multi-resolution models starts with a focus on methods to

simulate and analyze molecular interactions for modeling molecular aggregation.

In this chapter we reduce the complexity of the problem by simulating rigid bod-

ies and using a model description based on molecular geometry. This represen-

tation allows us to efficiently simulate molecular interactions and gain insights

into the aggregation of IgE antibodies when exposed to a given allergen. We be-

gin with an introduction to our methods for model construction in Section 3.1.

We then talk about the sampling techniques and methods used for our simulation

of molecular motions and aggregation in Section 3.2, and corresponding analysis

techniques in Section 3.3. Finally, we present the three sets of results from ma-

terial published in [84, 81, 82, 80] in Section 3.4 based on the simulation of IgE

aggregation.
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3.1 Rigid Molecular Model Construction

Before simulations can be run, rigid geometric models of the molecular structures

described in Section 2.4 need to be created. Here we describe the methods devel-

oped to generate reduced resolution rigid molecular models.

3.1.1 Resolution Reduction

Since it would be computationally prohibitive to use all-atom models at the

molecule counts we simulate, we reduce the complexity by only modeling molec-

ular geometry (Figure 3.1). To construct our geometric models, we begin with an

all-atom structure. Using the multi-scale model extension of UCSF Chimera 1.9

[95], we generate isosurface models of the molecules. An isosurface represents

points of constant value of a variable in space like an isoline does on planes. In

our instance, atomic density described as a volume is used to render isosurface

models at specified values of density. The volume described by the surface gen-

erated indicates where space is occupied by the molecular model. We generate

models at resolutions ranging from 4 Å for the smaller molecules and 6 Å for the

larger molecules.

The resulting model of the occupied volume, referred to henceforth as the base

model, is considered to be the model with the highest geometric resolution, i.e.,

the most detailed model (Figure 3.2 top left). Due to the nature of isosurface con-

struction, the base models generated are highly detailed (contain many polygons).

Unfortunately, this high level of detail in the geometry hinders performance of

conformation validity checking because binding site proximity and isosurface col-

lision detection calculations are dependent on the geometric detail. To overcome

this obstacle, we evaluate the cost versus benefit of decreasing model resolution.
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Figure 3.1: Models are polygonal reductions of the iso-surface of the all-atom
molecular structure. The relationship between these representations is shown
above: A.) High resolution iso-surface of the all-atom model, B.) the polygon
model shown overlaying the iso-surface, and C.) final reduced polygon model.

The base model can be reduced in complexity using standard polygon reduction

techniques which include controlled vertex/edge/face decimation, vertex cluster-

ing and mesh optimization [23]. To do this, we use the polygon reduction feature

in Maya [85], a modeling software package, that allows the generation of models

with a reduction specified by the percentage of polygons to be retained. Figure 3.2

displays our model construction process, starting with base model generation and

the production of reduced models at various resolutions.

3.1.2 Binding Region Modeling

To describe binding events with our rigid body models, we use regions to describe

binding sites. Binding events are triggered when the regions of two interacting

molecules overlap. During the simulation, bound molecule are held rigid relative

to each other.
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Figure 3.2: The model construction process starting with an all-atom model (IgE-
FcεRI) (top left), generating the iso-surface base model (top right), and then apply-
ing polygon reduction to generate a wide array of models with lower resolutions
(bottom).
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The binding sites on an IgE antibody are assigned to be the HV regions that

reside at the end of the Fab arms (Figure 2.2). To model the binding regions, we

use spherical description with a vertex describing the region center and a radius

for the region boundary. We calculated the HV region’s center of mass and found

the closest solvent accessible residue in the HV region to define the region center.

These vertices representing the binding locations were found using the all-atom

model and added to the geometric model. We used a radius of 5 Å from the

vertices to describe regions of binding for IgE.

Antigen DCT2 and DF3 have flexible DNP linkers that bind to the antibody

binding sites [47, 78]. For these DNP-based antigens, we model a spherical bind-

ing volume centered at the DNP linker’s center of mass with a radius of half the

linker length (7.5 Å).

Pen a 1 binding sites are located on the surface of the molecule. The binding

sites of Pen a 1 were identified using an algorithm for linear epitope prediction

[51], a method of epitope prediction utilizing protein sequence information. Ver-

tices on surface of Pen a 1 near the center of the amino acids involved in binding

were located using the all-atom model and then added to the geometric models.

A binding radius of 3 Å was used to describe the binding regions of Pen a 1.

3.2 Aggregation Simulation

In this section we discuss our methods for molecular simulation. For the antibody

aggregation problem, we focus on simulating the molecular motions that result in

the production of aggregate structures [84, 81, 82, 80].
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To generate potential aggregate conformations, we simulate antibodies and

antigen interaction. We do this by modeling the molecular interactions using a

simple Monte Carlo-based simulation and using a graph to maintain connectiv-

ity information. Simulations are initialized with randomly placed receptors and

antigens in a bounding volume in a collision-free state. The molecules are al-

lowed to move on the XY-plane and rotate about the Z-axis, defining three DOF

per molecule. We use three DOF for three reasons: 1.) The planar nature of the

cell surface at the resolution we model, 2.) Creating ideal conditions for antibodies

and antigen to bind to understand their structure / composition, and 3.) Reduc-

ing the computational cost to increase efficiency. The complexity of the simulation

(total number of DOF) depends primarily on the number of molecules simulated.

For example, 20 molecules requires exploration of a 60 DOF Cspace. Figure 3.3

shows small and large scale examples of our simulation.

Algorithm 3.1 outlines how the receptors and antigens move and how bind-

ing events are handled. At each time interval, a Monte Carlo step is taken and

all positions of the molecules in the simulation are updated. This step is deter-

mined using random sampling, a technique often used to solve high-dimensional

motion planning [56] problems. Within our random sampling scheme, biological

constraints of the system are considered, e.g., molecule speeds and rotation cor-

relation times, in addition to association and dissociation rates. This means that

at each time step, every pair of molecules whose binding regions are overlapping

will bind with a probability defined by the association rate. Alternatively, each

bound pair of molecules is probabilistically evaluated for bond breakage accord-

ing to the dissociation rate.

As the molecules move in the bounding volume, receptors and antigens begin

to bind and form aggregates. It has been shown larger aggregates have slower

diffusion on the cell surface [9]: As the aggregates increase in size, the collection
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(a) Small simulation (b) Large simulation

Figure 3.3: Simulations of different sizes. a.) Small simulation with 2 receptors
and 2 antigens. The 2 receptors (blue) are bound by an antigen (yellow), and there
is a second free antigen. b.) Large simulation with 90 receptors and 180 antigens.
The state is near the beginning of the experiment, showing a well mixed system
with some early binding.

of molecules as a whole slows down and begins to move at a reduced speed.

Simulations are run until a stopping criteria is met, e.g., stable graph formation or

time step limit reached.

3.3 IgE Aggregate Analysis

In order to simplify the analysis of assembled structures, we formulated a graph-

based structure to capture molecular interactions. In these graphs, there are two

classes of molecules, receptors and antigens, which are represented as vertices in

the graph with different labels. If a receptor binds to an antigen, it forms an edge
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in the graph to represent the bond between the two molecules. Such graph allows

us to encode the molecular structure of aggregates in a simple representation, en-

abling us to efficiently simulate and analyze complex aggregates.

At each timestep, i, a graph Gi of all molecules in the simulation and connec-

tions made between them is saved. The graph of the final state of the system,

G f inal, is saved at the end of the simulation. These graphs can be analyzed using

standard graph metric tools. For example, when the simulation reaches steady

state, the number of edges in graphs of consecutive timesteps (Gn,..., G f inal) should

stabilize around an average value. Also, the number and sizes of connected com-

ponents in G f inal measures the number and sizes of aggregates formed.

Thus, the graph Gi contains information about free (non-connected vertices)

and aggregated molecules (connected vertices) of a given simulation. Since anti-

gen only binds to receptors and vice versa, the graph is bipartite. An individ-

ual aggregate structure at time j, aj, can be identified as a connected component

found in Gi. We focus our analysis on the set of all aggregate structures, A, found

in G f inal. From our preliminary work, we highlight two graph-based analysis

that we can run on aggregate structures: aggregate classification and common ag-

gregate substructure. Traditional graph-based techniques can be simply applied.

For example, classification is performed using a depth first search traversal, and

commonly formed aggregate structures are identified through subgraph isomor-

phism.

3.3.1 DF3 Aggregate Analysis

In order to characterize the aggregate structures generated using antigen DF3, we

used a graph traversal algorithm. The characteristics of the aggregate structures

allow us to define four major classifications (shown in Figure 3.4):
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• Singleton (1 receptor with at least 1 antigen bound)

• Linear Chain (2 or more receptors forming a chain)

• Cyclic n-mer (2 or more receptors forming a cycle)

• Complex Aggregate (3 or more receptors forming a combination of single

bound receptors, linear chains and cyclic n-mers)

When an aggregate has two vertices, it must be a Singleton. When an aggre-

gate has three vertices, two of which are antigens, it also will be labeled a Single-

ton. On the other hand, a graph with three vertices with only one being a antigen

is a Linear Chain. Aggregates of four vertices or larger are distinguished as Linear

Chains, Cyclic n-mers, or Complex Aggregates. If these larger aggregates are tra-

versed and no repeated vertices are seen, it is labeled a Linear Chain. However,

if a single cycle exists in the graph, then the structure is labeled a Cyclic n-mer

where n refers to the number of receptors. The final structure category, Com-

plex Aggregate, is identified when finding multiple repeated-molecules or extra

molecules beyond those in a Cyclic n-mer. This means Complex Aggregates can

be any combination of Linear Chains and Cyclic n-mers.

These classifications are based on experimental studies of IgE aggregation. The

labeling of FcεRI with nanogold particles produces 2D plots of dark spots [123]

which can be used to compare to our receptor positions. Regular structures such

as Linear Chains and Cyclic n-mers may be identifiable, but the remaining classi-

fications can be difficult, if not impossible, to distinguish.

Classification is performed by traversing the aggregate graph using depth-first

search. This produces a search tree where cycles and dead ends can be identified.

Each of these is a feature that can be used to detect the four aggregate classifica-
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Figure 3.4: Aggregates represented as graphs. The diagrams demonstrate sample
receptor (blue) and antigen (yellow) binding patterns. The aggregates are classified
into 4 categories: A.) Singletons are just single receptors bound to a antigen or
two, B.) Linear Chains are two or more receptors forming a sequential chain, C.)
Cyclic n-mers are where two or more receptors form a cycle, and D.) Complex
Aggregates are made up of combinations of Linear Chains and Cyclic n-mers, in
this case a Cyclic trimer and two Linear Chains.
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tions. For example, Linear Chains have no cycles but do have dead ends. On the

other hand, Cyclic n-mers have only cycles but no dead ends. Complex Aggre-

gates consist of combinations of cycles and dead ends.

The ability to identify common aggregate substructure could provide insight

into likely and common aggregate formations. We use subgraph isomorphism

in order to identify the largest and most frequently occurring aggregate forma-

tions. McGregor’s common subgraph algorithm [86] can extract these substruc-

tures from the aggregate graphs produced by the simulation.

Spatial Clustering Analysis

Due to motion and association, the antigen/receptor positions will become more

clustered as aggregates form, eventually reaching a state that initiates the sig-

naling cascade for degranulation. These clusters can be observed experimentally

[9, 123], and theoretical studies of clustering, for example [36, 127, 89] can be an

instrument to compare our model with experiment. To quantify clustering in our

models, we use a geometry-based statistical analysis of clustering tendency, the

Hopkins statistic [48]. The Hopkins statistic is a measure of spatial randomness

which utilizes nearest-neighbor distance of randomly sampled points and ran-

domly selected probes (known molecule locations). We use receptor molecule

positions for our cluster analysis in line with previous work [128, 27]. We calcu-

late the Hopkins statistic in a similar fashion as in [128], and for nearest neighbor

calculations, we use the Euclidean distance between two points. The values cal-

culated for the Hopkins statistic range from [0,1]. The closer the Hopkins statistic

value is to 0.5, the more randomly spaced the points are, whereas the closer the

value is to 1.0, the more clustered the data is.
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3.3.2 Pen a 1 Aggregate Analysis

In addition to the 3-D Monte Carlo method simulating IgE binding to Pen a 1,

we developed a supplemental simulation utilizing Rule-Based Modeling (RBM).

RBM is an approach to modeling where a set of rules are used to indirectly specify

a mathematical model that can be evaluated using Markov chain or differential

equation based method. Our RMB incorporates geometric information in both the

rules for aggregate formation and rate constants. The RBM is implemented with

RuleBender [113] using the BioNetGen language [15]. This method automates the

generation of the coupled differential equations associated with the creation of

new molecule aggregates as IgE binds to the available binding sites of Pen a 1.

Steric Analysis Using Rule-Based Modeling

Steric effects of receptors bound to an antigen with multiple binding sites in re-

lation to binding site exclusion has been analyzed in [44]. However, they only

investigated low dimensional (1D and 2D) shapes with specific geometries (sur-

face or array) and either ordered or uniformly-random binding site distributions.

This information is critical to understanding what structural characteristics are

shared among antigen effective at eliciting an immune response. To gain insights

into properties of the volumes of our aggregate structures, we take our modeled

aggregates and generate all-atom structures. With these all-atom models, we can

take measurements of the aggregate structure and analyze features of the aggre-

gate such as steric hindrance and measure internal distances. We can also quantify

the model construction quality. An example Pen a 1 all-atom aggregate is shown

in Figure 3.5.
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Figure 3.5: An aggregate structure generated using our method. The eight IgE-
FcεRI (light/medium blue) are bound to the Pen a 1 antigen (tan) at various bind-
ing sites on the antigen (various colors).

To gain further insights into how antigen conformation plays a role in steric

hinderance, we use a novel application of RBM to evaluate the effect. We analyze

how the conformation of the antigen affects steric constraints of the system. Due

to the size of IgE and the distances between binding sites on Pen a 1, neighboring

binding site occupancy is important. A description for dependency on neighbor

occupancy is shown in Figure 3.6. Steric hindrance induced by neighbor occupa-

tion can be broken down into three categories. First, IgE can easily bind to a region

if neighboring sites are free (Figure 3.6 (a)). Second, on the strand with negative

curvature around a region, occupation of nearest-neighboring regions can reduce

accessibility of IgE to this region, effectively reducing the binding rate constant

(Figure 3.6 (b)). Finally, on the opposite side with positive curvature, IgE can still

bind to a region even if its nearest neighbors are occupied (Figure 3.6 (c)). The

binding rules (listed in the appendix) are written with explicit neighboring site

dependency.
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Figure 3.6: Steric hindrance induced by neighbor occupation. The six binding
regions are labeled A, B, C, D, E, F. (a) No neighbors: receptors are free to bind,
(b) Negative curvature reducing binding rate constant, and (c) Positive curvature
with possible effect on binding rate.

Model Construction and Calculations

From this geometric analysis, we know that a negative curvature in the coiled coil

may introduce hindrances to the accessible surface area for IgE binding and po-

tentially brings binding sites closer. This makes the accessibility of a receptor to

a particular binding site dependent on whether its neighboring sites are bound
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to IgE or not (namely their occupation states). However, because there are 16-18

available binding sites in the antigen, the introduction of geometric effects may

lead to the number of rules becoming too overwhelming to implement, as a de-

pendency on the occupation state of neighboring binding sites has to be explicitly

added to some of the rules of binding events. Therefore, we make a few simplify-

ing assumptions to generate the rules and associated ODEs:

• We assume that IgE binds to a single binding site in Pen a 1, i.e., binding

events in which IgE binds to two sites on the same Pen a 1 are forbidden.

• To compare with the Monte Carlo simulations, which were carried out for a

single Pen a 1 molecule, we do not allow crosslinking through IgE binding

to two or more different Pen a 1 molecules.

• We significantly reduce the number of rules (and ODEs) by assuming that

each IgE binds to a region on Pen a 1 known to have one or more binding

sites. This is a reasonable assumption as binding sites in the same region are

close (< 5 nm); In the event of IgE binding to one binding site in a particular

region, the other binding site(s) in the same region may be automatically

blocked.

• Because the binding region on the tail of Pen a 1 is longer than the others (see

Figure 2.5), a more physical representation is made by splitting this longer

region into two independent ones in our RBM, resulting in each strand of

the coiled-coil structure having six binding regions.

• We can further decrease the number of rules by considering that each strand

in Pen a 1 binds IgE independently of the other, i.e., the occupation state of

any binding site on one strand of the coiled coil is independent of the occu-

pation state of any binding site on the other strand. Since each strand has

six regions, the maximum number of conformations of IgE binding for each
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strand is 26 = 64. The aggregate sizes of IgE-Pen a 1 with 12 binding regions

is now given by the combined independent probability of the aggregate for-

mation in each strand of the coiled coil.

The probability of finding aggregates of size zero to twelve is calculated by

simulating each strand of the coiled coil separately, with different rules depending

on the positive or negative curvature of the strand. The probability P(n) to form

an aggregate of size n is given by:

P(n ≤ 6) =
n

∑
m=0

PI(m)PI I(n−m),

(3.1)

P(n > 6) =
6

∑
m=n−6

PI(m)PI I(n−m),

where PI(I I)(n) is the independent probability of forming an aggregate of size

n in strand I(I I).

Model Rate Constants

In order to analyze the influence of both rules and rate constants on our rule-

based modeling results, we create a set of rules for Pen a 1. The General rule

set in Tables A1 and A2 takes into account neighboring binding site interactions

and employs hierarchical binding rate constants. This means that when IgE binds

to any site i on Pen a 1, the associated rate constant depends on the occupation

of its nearest (first-order) and next-nearest (second-order) neighbors. We define

four hierarchies of binding, thus the binding rate constants are four independent

parameters. The unbinding rate constants are equal to 0.01 s−1 for all aggregate
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formation rules. Since the actual rate of Pen a 1 is unknown, we use the rate of

DF3 as a substitute. Neighbors are defined by geometry: as the Pen a 1 molecule

has a slight S-shaped curvature, binding sites on the concave (negative curvature)

sides of the molecule are closer than sites on the convex (positive curvature) side

of the molecule.

Resolution changes can be simulated in two ways: by fixing the binding rates

and changing the rules for each resolution or by keeping rules fixed and changing

the binding rates associated with each rule. The former requires a very careful

analysis of the geometry of the receptor/antigen system at each resolution. The

latter only needs a set of rules that roughly represents the site interactions given

the curvatures of the protein complex, and rates can be changed as binding to par-

ticular sites is allowed or disallowed. Therefore, we focus on an implementation

of the latter by generating a set of rules which capture the geometric constraints

of the molecules and define rate constants that are dependent on the occupation

of neighboring sites.

The advantage of using independent rate constants as parameters related to

neighbor occupation is that we can simulate high and low resolution studies by

turning rules on or off. The rate constant of a given rule determines whether or not

the rule is on (non-zero rate constant) or off (rate constant set to zero). Rules that

favor the formation of large aggregates are turned on.As our Monte Carlo results

indicate, the loss of detail leads to a reduced volume of Pen a 1 and receptors,

thus exposing possible binding sites. At high resolution, the volume of recep-

tors is larger and the extra detail can reduce binding site availability if a number

of sites are already occupied. This indicates that the binding rate constants for

rules associated with the formation of large aggregates should be turned on (for

more binding events), and for formation of small aggregates some of these rate

constants should be off, thus allowing fewer binding events.
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The four binding rate constants are assigned to the rules as follows: k f 1 is

assigned to rules that specify that none of the neighboring binding regions are

occupied, k f 2 is assigned to rules that specify that one nearest-neighbor region is

occupied, k f 3 is assigned to rules that specify that one next-nearest neighbor is

occupied, and k f 4 is assigned to rules that specify that two nearest neighbors are

occupied. As the tail region in Pen a 1 was split into two independent regions for

our model, (regions E and F in the rule set, as seen in Figure 3.6) we treat these

regions as a special case and assign the rate k f 4 to the E and F binding rules that

specify that nearest-neighbor E or F is occupied.

We demonstrate how the rules were selected using the rules associated with

binding region A in Figure 3.6 as an example. Region B is a nearest neighbor

to region A, so we specify region B as a region that affects the binding rate of

region A in the rules for A binding for both strands. On strand I, the next nearest

neighbor to region A, region C, is located in a region of positive curvature (see

Figure 3.6(c) for an illustration of positive curvature). Therefore, in the A binding

rules for strand I, we do not specify region C as a neighbor that affects the binding

rate of region A. On strand II, region C is located in a region of negative curvature

(see Figure 3.6(b) for an illustration of negative curvature) along with region A.

Therefore, in the A binding rules for strand II, we specify region C as a neighbor

that affects the binding rate of region A.

We use the General rule set (Appendix Tables A1 and A2) to illustrate how

the influence of neighbor occupancy hierarchy on binding site probability favors

particular aggregate sizes. Our results show that if all rules are on with identical

binding rates k = 1.0 molecule−1s−1, the distribution of aggregate size is skewed

to larger aggregates. However, as we turn rules off by setting their associated

binding rates to zero in hierarchic order (larger to smaller aggregates), we see the

progression shown in Figure 3.7, until we obtain a single peak at aggregate size 4
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if all nearest and next-nearest neighbors to site i need to be empty for a binding

event to occur. Note that binding affinities are not known for the binding sites of

Pen a 1, so we use values known for DF3. Since our system is finite in size, the

association rate unit of molecule−1s−1 is used (further discussed in Section 3.4).

The analysis shown in Figure 3.7 shows how turning on and off different bind-

ing rates affects the distribution of aggregate sizes. The results indicate that it is

possible to fine tune a particular aggregate distribution by choosing the rule set

wisely (based on geometric input) and by setting binding rate constants appropri-

ately. Finding a proper rule set is one of the main difficulties of this method, but

PDB structures and feedback from Monte Carlo 3-D rigid body simulations can

give crucial input on this step. Binding rate constants can be varied as well. Our

Monte Carlo simulations assume a constant binding rate of k = 1.0 molecule−1s−1

for all sites. However, to mimic loss of accessible volume to a particular binding

site on Pen a 1, the rates can be varied to improve fits to data. These rates are

considered free parameters of the simulation and they represent physical binding

rates qualitatively.
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Figure 3.7: For the same General sets of rules, we selectively turn hierarchic rates on
and off. On binding rates have their value fixed at 1.0 molecule−1s−1 and off bind-
ing rates are set to zero. As we make the rules more restricted, smaller aggregates
are formed. The purple peak at 12 is labeled “None” for having no restrictions
on binding due to neighbors (k f 1, k f 2, k f 3, and k f 4 are on). This is why the largest
possible aggregates are formed almost 100% of the time. The data labeled “Re-
gion” (blue) allows for binding to a site even if nearest and next-nearest neighbor
sites are bound (k f 1, k f 2, and k f 3 are on; k f 4 is off). First order interactions (nearest-
neighbors, green) are not allowed for this data set (k f 1 and k f 3 are on; k f 2 and k f 4
are off). The peak in red (second order) does not allow binding to sites if both their
nearest and next-nearest neighbors are occupied (k f 1 is on; k f 2, k f 3, and k f 4 are off).
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Algorithm 3.1 IgE Aggregation Simulation Algorithm.

Input: Receptors R, antigens A and graph G.

Output: A set S of the resulting aggregates

1: Initialize(R,A,G)

2: for timestep = 0:MAX TIME do

3: for each molecule m ∈ R ∪ A do

4: m.DetermineMotion(G)

5: moleculeList old = m.KnownBoundSites()

6: moleculeList new = m.PotentialBindingSites()

7: for each t ∈ old do

8: S.TryRemoveLink(G,m,t,D RATE)

9: end for

10: for each t ∈ new do

11: S.TryAddLink(G,m,t,A RATE)

12: end for

13: end for

14: if G.StabilityReached() then

15: break()

16: else

17: G.StoreConnectionCount()

18: end if

19: end for

20: set S = G.DetermineAggregates()

21: return S
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Model Comparison

In order to quantify the difference between the Monte Carlo and rule-based mod-

eling aggregate sizes for each resolution, the residual sum-of-squares (RSS) nor-

malized by the number of possible aggregate sizes (13) was calculated for each

resolution. The equation used to calculate the normalized RSS is:

RSS =
∑N

i=1(Pi
MC − Pi

RBM)2

N

where N is the total number of possible aggregate sizes in a histogram (each his-

togram has the same number of possible aggregate sizes), Pi
MC is the occurrence

probability of the ith aggregate size of the Monte Carlo data, and Pi
RBM is the oc-

currence probability of the ith aggregate size of the rule-based modeling data.

Since the data points used in this calculation are probabilities, the maximum

possible normalized RSS is one, and the minimum possible normalized RSS (cor-

responding to two identical histograms) is zero.

3.4 IgE Antibody Aggregation Results

For our rigid body modeling of aggregation, we present three sets of results. In the

first set of results we focus our preliminary analysis of the method [84] (Section

3.4.1). We then move on to an analysis of the impact of valency on our simulations

[81] (Section 3.4.2). We finish our analysis of the method by quantifying the impact

of resolution on our simulation [82, 80] (Section 3.4.3).
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3.4.1 Method Evaluation

We begin with an analysis of the base methods used to simulate aggregation of an-

tibodies published in [84]. We used the antigen DF3 for this experiment. We use

90 receptors in our experiment and specified antigen counts at 30, 45, 60, 90, 135,

and 180. These molecular counts were chosen to match experimental conditions

which keep receptor concentration consistent and vary antigen concentration [9].

The bounding area used was 400 nm x 400 nm (160,000 nm2) and is fixed over the

course of all experiments. Simulating 90 receptors on a patch this size results in

a density of ∼600 receptors/µm2. In all simulations we apply reflecting bound-

ary conditions, ensuring that the number of molecules is kept constant. Thus,

molecules are not permitted to exit the area representing the membrane patch and

reflect off boundaries when reached. A fixed time interval of 13.2 ms was used for

all simulations and each simulation was run for a total of 36,000 time steps, with a

total time sufficient to reach steady state. Association and dissociation rates of 1.0

molecule−1s−1 and 0.025 s−1, respectively, were used. Since our systems are finite

in size, the association rate unit molecule−1s−1 are calculated from the original

units of M−1s−1, M being molar concentration, following calculations from [89].

The base speed, s, for molecules is set to be 0.09µm2/s from [9]. Recent ex-

perimental evidence suggests that unbound molecules move at faster rates than

bound molecules [9]. Since this reduction in speed has not been fully quantified,

we use a theoretical basis for modeling the slow down in our system [34, 61].

While there are many slow down models that could be employed, we decided to

use a model where receptor count is used as a surrogate for size measurement to

determine relative slow down. The geometric analysis of this work emphasizes

packing structure rather than aggregation kinetics, so the choice in slow down

method should not impact aggregate structure packing at steady state. The slow

down is incorporated into the simulation by diffusing aggregates inversely pro-
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portional to their size, i.e., the diffusion coefficient of an aggregate linking 3 re-

ceptors is 1/3 of the original coefficient. We note that our slow down scheme does

not account for physical barriers that exist in the cell membrane that may induce

slowing/immobilization (like those in [91]).

Aggregates become more stable as they get larger [9]. The rotation of an ag-

gregate is dependent on multiple receptor contact points with the cell membrane.

The more contact points and aggregate has, the more restricted the aggregate dy-

namics become. We model rotation of an aggregate by choosing a direction and

angle value based on receptor contacts points. For any given aggregate rotation,

the angle is constrained by receptor displacement, i.e., how much the receptors

move given a rotation operation. The receptor furthest from the center of the ag-

gregate would be the most displaced by a rotation operation. Thus, the aggregate

rotation is limited by the diffusion constant of the receptor furthest from the ag-

gregate center.

Simulations were created using PMPL, a motion planning library developed

at Texas A&M University and graph analysis was performed using elements of

Boost Graph Library [110]. Experiments were run in a Linux environment on a

single processor of an Intel i7 quad-core with 8G of RAM. Multiple (10) runs were

done for each experiment.

Equilibrium of Aggregate Formation

Aggregates should be the most complex after the simulation is allowed to run to

a steady state. To evaluate this, we quantified the stability of the graph G in terms

of the number of edges. This is due to the fact that the addition and removal of

edges indicates a change in aggregate structure. As the number of edges in the

graph starts to level out, we can conclude we have reached a steady state.
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The average number of edges in G for different ratios of antigen DF3 is shown

in Figure 3.8. In all of the simulations, the number of edges quickly grows no

matter the receptor to antigen ratio. Starting near 9,000 time steps, all the curves

begin to level off with much smaller growth in the number of edges, indicating

that at this point the aggregates were mostly formed and slowly reaching towards

a steady state. This result is consistent with observations in changes of FcεRI mo-

bility [9], which are associated with changes in aggregate size. Abrupt slowing of

IgE-receptor aggregates can be observed with the addition of polyvalent antigen

and are typically complete within 60-90 secs [9].
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Figure 3.8: The number of edges in G over time used to estimate simulation stable
state. The x-axis is simulation time and the y-axis is the number of connections.
Different receptor to antigen ratios are shown, where R and L represent receptor
and antigen, respectively.
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Aggregate Size

Electron microscopy has shown that large FcεRI “signaling patches” form within

1-2 minutes of addition of polyvalent antigen [9]. One limitation of this tech-

nique is that, while these patches may contain tens to hundreds of IgE-FcεRI and

antigen, it is not possible to estimate the range of aggregate sizes within these sig-

naling patches. This is due to the fact the resolution of the data cannot provide

any connectivity information of the aggregates, thus it is near impossible to dis-

tinguish between actually bound and simply proximal receptors. Since we have

connectivity information about our graphs, we can report aggregate sizes.

Results from simulations of antigen DF3 are shown in Figure 3.9, where aggre-

gate size was measured for every subgraph in G of three vertices or more. The

number of vertices in a subgraph distinguish the size of an individual aggregate.

Experimental studies have focused on reporting temporal information about re-

ceptors, so we measure aggregate size as the subset of vertices labeled as receptor,

i.e., aggregate size is the number of receptors. After the simulations were run,

aggregate sizes were collected and averaged.

In Figure 3.9 there are clear aggregate size differences depending on the recep-

tor to antigen ratio. With a high ratio of receptor to antigen (red bar in Figure 3.9),

there are fewer antigens so receptors can not easily find unbound antigen. Since

there is a low number of antigens, aggregates do not get very large. Looking at

the highest ratio experiment, aggregates had only up to seven receptors. With a

low ratio (purple bar in Figure 3.9), a saturation of antigen and lack of receptors

is observed, resulting in small aggregate structures. This is because the binding

sites of the receptors are quickly filled with unbound antigen keeping aggregate

sizes small, resulting in aggregates of at most size six.
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Figure 3.9: Histograms of aggregate size (as defined by number of receptors). Ag-
gregate sizes were collected at the end of runs and averaged.

The ratios which lie in the middle (orange, yellow, green and blue bars in Fig-

ure 3.9) show different characteristics than at the ratios at the extremes. As the

ratio of receptor to antigen increases, the largest aggregate size and number of

aggregates initially increase, but eventually peak and decline. We see this non-

monotonic dependence clearly in Figure 3.9, finding higher counts of small aggre-

gate structures and larger aggregate sizes for ratios near the middle compared to

those at the extremes.
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Aggregate Populations

Population kinetics describe the population of a class of objects over time. We

classify aggregate structures using the four classes defined in Figure 3.4, single-

ton, cyclic n-mer, linear chain and complex aggregate. Given these four classes

and an additional unbound receptor class, referred to as free, we can measure

how the population of each class changes over the course of the simulation. For

each ratio experiment, the class of receptors are plotted against simulation time in

Figure 3.10. Values are averaged over all runs.
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Figure 3.10: Population kinetics of the simulations of different receptor (R) to anti-
gen (L) ratios for antigen DF3.
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We notice that all six plots show more gradual change in class after 9,000 time

steps. This relates to Figure 3.8 where the number of edges begins to converge.

Therefore, Figure 3.10 confirms that the majority of aggregates are fully formed

when steady state in edge count is reached.

One notable trait in Figure 3.10 is that the percentage of unbound (free) recep-

tors decreases quickly in all six ratios. When there is a high receptor to antigen

ratio as in Figure 3.10(a), there are always some remaining free receptors. As

this ratio decreases, the number of free receptors go down since there are more

antigens to bind to the free receptors. We also see that right after the antigen start

interacting with the antibodies (near time step 1,000), the percentage of free recep-

tors in the highest receptor to antigen ratio (Figure 3.10(a)) is 70%, where in the

lowest ratio it is 10% Figure 3.10(f). This matches experimental results showing

antigen concentration is related to immobility (and aggregate formation) [9].

Recall that singleton refers to a single receptor bound to either one or two

antigens. In the run where there is a low receptor to antigen ratio (Figure 3.10(a)),

we see a low percentage of singletons (magenta line), but we see this percentage

increase as the receptor to antigen ratio decreases. This is intuitive since unbound

receptors should have an easier time finding one or two unbound antigens in these

low ratio (high antigen count) cases.

Another results that Figure 3.10 indicates is that cyclic n-mers are not very

common in any case due to the rigid-body nature of our simulation, this type of

structure is considered very constrained. It requires that antigens and receptors to

bind at angles that are optimized in order to form cycles. Another requirement is

that nothing else can bind beyond those receptors needed for the cycle. Meeting

these requirements simultaneously is unlikely given the accessibility of the three

binding sites of DF3. Recall that if other structures extend off the Cyclic n-mer, it

will be classified as a Complex Aggregate.
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Aggregate Substructure Analysis

To evaluate the the aggregates generated, we need to be able to compare their

structures. Common substructures seen in the graph topology of compared ag-

gregates can provide insights into the aggregate structure composition and con-

ditions necessary to generate large aggregates. In this study, the two largest ag-

gregates from each of the ten runs of the six ratios (120 total) were collected for

analysis. McGregor’s common subgraph was performed between all pairs of se-

lected aggregates to produce a set of common substructures. To describe these

common structures, classification was run using the categories described before

in Section 3.3.1.

Two resulting aggregates and their common subgraph is shown in Figure 3.11.

Even though the two original aggregates had two different classes (Complex Ag-

gregate and Linear Chain for a and b, respectively), their common subgraph was

a Linear Chain of three receptors and three antigens. The vertices that are part of

the subgraph are circled with their corresponding vertices labeled numerically for

easier comparison. The vertices are in positions that relate to their center of mass

of the molecules. However, the vertices are not scaled for the size of the molecule.

Table 3.1 outlines the classifications of the subgraphs identified from pairwise

comparison. In these results, there appears to be a relationship between common

subgraph classification and the ratio of receptors to antigens. With few antigens

(three higher receptor to antigen ratios), there was an even ratio of Linear Chains

and Complex Aggregates found as the subgraph isomorphism. However, there is

increase in Linear Chains when the saturation of antigens increases. In the three

lowest receptor to antigen ratio experiments, we see a much higher ratio of Linear

Chains versus Complex Aggregates as the common substructure. We note that in

the population kinetics results that at the lowest receptor to antigen ratios, Com-
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plex Aggregates overtake Linear Chains in classification. Linear Chain geometry

appears to be better suited for generating large aggregates in high ratio experi-

ments.

(a) Complex Aggregate (b) Linear Chain

Figure 3.11: Subgraph Isomorphism between two DF3 antigen aggregates from
the 90R/90L ratio run. The first (a) is a Complex Aggregate and the second (b) is a
Linear Chain. Purple rings outline the most common subgraph structure and the
numbers label the correspondence between the graphs.

Receptor Ratio
High −→ −→ −→ Low

Classification 30L 45L 60L 90L 135L 180L
Linear Chain 48% 36% 45% 90% 86% 89%
Cyclic n-mer 0% 0% 0% 0% 0% 0%
Complex Agg 52% 64% 55% 10% 14% 11%

Table 3.1: Classification of the most common subgraphs extracted from pairwise
aggregate comparison. Aggregates were generated using antigen DF3. Ninety
(90) receptors were used for all runs.
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3.4.2 Antigen Valency Study

Results on antigen valency from [81] are presented in this section. In this experi-

ment, we wanted to gain insights into how valency impacts aggregate structures.

To do this we compare DCT2 and DF3, two DNP based antigens that are similar in

size but differ in valency (bivalent vs trivalent, respectively). For each antigen, we

simulate a variety of antigen to receptor ratios. Receptor count is kept consistent

at 90, and we varied the antigen count, in order to match experimental analysis.

We ran counts of 30, 45, 90, and 180 for both antigens. We simulated the molecules

on a 400 nm x 400 nm (160,000 nm2) membrane patch. A fixed time interval of 13.2

ms was used for all simulations and 36,000 steps were taken. The association and

dissociation rates used were 1.0 molecule−1s−1 and 0.025 s−1, respectively. The

speed for all molecules, s, is 0.09 µm2/s and the speed of the aggregates are re-

duced to s/|a|, where a is the number of molecules in the aggregate. Multiple (10)

runs of each experiment were performed. Experiments were run on single cores

with Intel Xeon E5645 processors and 4GB RAM per processor.

Equilibrium of Aggregate Formation

To analyze the stability of the system, we look at the number of edges in the graph

G. The average number of total edges in the entire simulation of graph G over the

course of the experiments are shown in Figure 3.12. As can be seen, the number of

edges initially grows quickly in all of the experiments. Near 9,000 timesteps, the

rate at which edges are being added to G starts to slow down, as evidenced by a

leveling off of the edge count. We infer this as the aggregates becoming stable and

fully formed. This result is found to be consistent with observations seen in IgE-

FcεRI where it shown that changes in mobility are associated with aggregation

[9]. Also in Figure 3.12, DF3 produces more edges than DCT2 for the same ratio
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of antigen to receptor. This is expected due to the valency of the antigen. DF3 has

50% more binding sites accessible per molecule.
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Figure 3.12: The number of connections vs. time step. The system’s steady state
is indicated by the flattening of the curves. The x-axis is simulation timestep and
the y-axis is the number of edges in G.

Aggregate Size

Aggregate size was measured for every connected component in G produced over

the course of the simulations, and the results is shown in Figure 3.13. Like the

experiment prior, we measured aggregate size by receptor count. After the sim-

ulations were run, aggregate size counts were collected and averaged for each

antigen, and aggregate sizes of two or larger were reported.
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Figure 3.13: Aggregate sizes and number of occurrences. Aggregate sizes (number
of receptors) were enumerated at the end of run and averaged. The x-axis is the
size of aggregates and y-axis is the average number of aggregates of that size.

We see two trends in Figure 3.13. First, the different ratios for both antigens,

the middle ratios (45 and 90 antigen counts) produce more aggregates of any given

size relative to the extreme ratios (30 and 180 antigen counts). Second, these me-

dian ratios produce larger aggregates compared to the extreme ratios.

In Figure 3.13, there are clear aggregate size differences depending on the re-

ceptor to antigen ratio. In low antigen count simulations, antigens have a hard

time binding to already bound receptors since there are so few. Because of this,

aggregates tend to stay small. Looking at high antigen count simulations, we see

that a saturation of antigens produces smaller aggregates. This is attributed to
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receptor binding sites quickly filling up with unbound antigens reducing their

ability to crosslink. More moderate ratios produce more aggregates and larger

aggregates.

Starting from receptor saturated experiments (high receptor to antigen ratio)

and increasing the antigen count, aggregate counts of all sizes increase. This trend

continues until antigen saturation when we see a decline in the number of aggre-

gates. This trend is seen in the bell shape curve in the number of occurrences

of any given aggregate size and molecule counts (Figure 3.13). These results are

consistent across both antigens.

We also see in Figure 3.13 that the 2 antigens simulated produce aggregates of

different sizes. Bivalent DCT2 produces slightly more small aggregates, but triva-

lent DF3 overall produces larger aggregates. This can be caused by the valency

difference, trivalent DF3 has similarly accessible binding sites but can produce

more complex structures (cycles, chains and trees) than bivalent DCT2 (cycles and

chains).

Resulting Aggregates

Antigens with different valencies can produce different aggregate formations. A

sample of the resulting aggregates constructed during our simulation is shown

in Figure 3.14. We see that trivalent antigen are capable of generating aggregates

that cannot be made using bivalent antigen, i.e., trees.

Details of aggregate structures (Figure 3.14) are interesting because aggregate

binding patterns are difficult to see using experimental imaging techniques. For

example, notice the compactness of Figure 3.14 A. Even though the DCT2 antigen

is only able to produce simple structures, the receptor positions are compact, sim-

ilar to the DF3 aggregate (Figure 3.14 B). These reconstructions enable the extrac-
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Figure 3.14: Aggregates produced during our simulations. (A.) DCT2 Aggregate
(Size 4) (B.) DF3 Aggregate (Size 6). Note aggregate size is dependent on receptor
(blue) count, antigens DCT2 (cyan) and DF3 (orange) are disregarded.

tion of more information about the aggregates besides their connectivity graphs.

For example, metrics like the distribution of distances between receptors can be

measures and compared across aggregates made with different antigens.

3.4.3 Model Resolution Study

In this set of results, we are focused on determining the impact that model reso-

lution has on our simulation. These results were published in [82, 80]. For these
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simulations, we simulate a discrete patch of membrane 200 nm x 200 nm (40,000

nm2). We simulate 24 receptors for all experiments, resulting in a density of ∼600

receptors/µm2. In two different experiments, we simulate twelve DF3 and one

Pen a 1 antigen molecules at four distinct resolutions, reducing the models of both

antigen and receptor by 0%, 50%, 75% and 90%. Due to the presence of multiple

DF3 molecules, it is possible to observe crosslinking in the DF3 simulations. How-

ever, no antigen-mediated crosslinking can be observed in the Pen a 1 simulations

as only one molecule of Pen a 1 is simulated in each experiment.

We use the diffusion coefficient 0.09 µm2/s of IgE-FcεRI found in [9] for all

molecules. We use a time step of 10 µs and run experiments for 500,000 time

steps, long enough for the simulations to reach a steady state. Association and

dissociation rates of 1.0 molecule−1s−1 and 0.01 s−1, respectively, were used for

both antigens. Simulations were run on single cores of Intel Xeon E5645 proces-

sors with 4 GB of RAM per processor. Thirty (30) runs of each experiment were

performed.

Volume and Timing

We begin with an analysis of polygon reduction and the impact it has on model

volume. Table 3.4.3 shows the number of polygons and volume for each model.

The polygon reduction algorithm works by specifying a percentage of the poly-

gons to reduce, leading to the close correspondence between the reduction per-

centage and the number of polygons. We find that volumes decrease as the num-

ber of polygons is reduced. Such decrease is expected, and can be quite dra-

matic (nearly 50% for 90% reduced Pen a 1). We note that volume reduction does

not necessarily mean less realistic results; “soft docking” approaches [39] allow a

certain degree of inter-protein penetration to approximate flexibility given rigid

structures.
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Molecule Model Model Percent Reduction
Name Property 0% 50% 75% 90%

Polygons 4876 2438 1216 490
Receptor Volume (nm3) 234.98 227.90 208.73 162.31

Volume (%) 100.00 96.99 88.83 69.07
Polygons 1208 604 302 120

DF3 Volume (nm3) 15.83 14.90 13.16 9.74
Volume (%) 100.00 94.13 83.13 61.53

Polygons 2328 1164 582 234
Pen a 1 Volume (nm3) 51.60 49.95 44.86 28.80

Volume (%) 100.00 96.80 86.94 55.81

Table 3.2: Model reduction statistics including polygon counts and volumes of the
molecular models generated at a variety of resolutions.

As seen in Figure 3.15, the reduction in polygons has a clear effect on runtime.

We see a linear increase in runtime versus model polygon count. This is due in

part to the nature of the rigid body modeling; collision detection is a major factor

in computation time and is highly dependent on model complexity [63]. We at-

tribute the calculation of binding site interactions, whose costs depend on valency

and molecule size, to the difference in slope between DF3 and Pen a 1 runtimes.

Impact of Resolution on Quality of Results

Simulations are run until a steady state is reached. To ensure the system is stable,

we count the number of bonds between molecules, i.e., the number of edges in

G. Figure 3.16 (a) shows the number of edges in G for DF3 in blue. We see that

for DF3, all of the reductions generate similar numbers of connections. The more

reduced models produce slightly more connections but all of the average lines are

very close. The mean of each reduction is contained in the overlap of the standard

deviation of all reductions.
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Figure 3.15: We compare the runtime of the different resolutions of the same
model. The x-axis is the number of polygons used to describe the models and
the y-axis is the time took to run the experiment in hours.

In Figure 3.16 (b) we see that Pen a 1 model resolution has a higher impact

on the number of connections that are made. The 90% reduced model made on

average nearly two more connections than the 0% reduced model for a single anti-

gen. This is one of the side effects of reducing model volume. With the reduction,

there is more open volume around the binding sites, reducing steric hindrance of

receptors trying to bind to sites in the same or adjacent regions.

To further analyze the implications of model reduction, we plot histograms

of aggregate size versus percentage of occurrence (Figure 3.17). We see in Fig-

ure 3.17 (a) that there is minimal impact on aggregate size distributions for the

DF3 experiment. The distribution for each model reduction seem to be the same.
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(a) DF3 (b) Pen a 1

Figure 3.16: Influence of model resolution on the number of connections made
during a given simulation. The x-axis is simulation time step and the y-axis is the
number of edges in G. For DF3 (a) connections do not seem to be affected much
by model resolution. Pen a 1 binding is affected by the use of different resolutions
(b); lower resolutions generate more connections than higher resolutions.

This is not the case for Pen a 1, seen in Figure 3.17 (b). The distribution has the

two least reduced models peaking near aggregates of size seven whereas the two

most reduced models peak near aggregates of size eight. This is attributed to the

volume reduction of the model which in effect relaxes the steric constraints. With

a smaller volume, more free space is available for a molecule to pack into a tight

space within a given aggregate.

Clustering Analysis of DF3

To quantitatively analyze the clustering of the system, we measure the Hopkins

statistic of the receptors over the course of the simulations. We focus on the anal-

ysis of clustering for DF3 due to the availability of experimental data [78]. Un-

fortunately, a similar analysis for Pen a 1 does not result in significant data as

there is only one Pen a 1 allergen in each simulation run. To evaluate cluster-
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Figure 3.17: Influence of model resolution on the size of aggregates generated
during a given simulation. Histograms show aggregate size vs. percentage of
aggregates of that size. For DF3 (a), the different resolutions do not affect the
distribution of aggregate sizes. For Pen a 1 (b), aggregate size seems to be depen-
dent on model resolution, with lower resolution Pen a 1 models producing larger
aggregates.

ing, the Hopkins statistic values were calculated over the course of the simulation

and the results are an average of the simulations for each experiment as seen in

Figure 3.18. These values are then plotted and compared to the values obtained

experimentally in [78], as shown in Figure 3.18.

For a baseline, we performed a Hopkins statistic calculation for a simulation

with only receptors and no antigen and produced the plot in Figure 3.18 (a). We

find that for the no antigen simulation, the value does not change and is hovering

at around 0.5, indicating that the receptors are essentially randomly distributed.

We compare our no antigen simulation with the 0 nM experiment in [78] (Fig-

ure 3.18 (a), red dashed line). Our value (mean 0.5) differs from what is seen

experimentally (mean 0.74); however, this difference can be attributed to the fact

that cell membranes present topological inhomogeneities that result in natural re-

ceptor organization [71, 96, 8, 73]. These features are not incorporated in our sim-
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(a) No Antigen (b) DF3

Figure 3.18: Influence of model resolution on the clustering of receptors during a
given simulation. Hopkins Statistic values (measure of clustering) are plotted over
the course of the simulation without antigen (a) and with DF3 (b). All resolutions
converge to the same results. Comparison with experiments in [78] are shown as
the red lines (mean-dashed, variance-solid).

ulations for simplicity. Therefore, we observe no clustering instead of the slightly

clustered distribution observed in experiments.

Based on the conclusion of [78], where the authors imply that the antigen-

induced aggregate state can influence cell signaling, we assume that final antigen-

receptor aggregate size can be associated with cellular degranulation. Thus, to

analyze clustering in the presence of antigen, we compare the Hopkins statistic

results from the experiment in [78] that resulted in optimal histamine secretion

(10 nM of DF3) to the Hopkins statistic obtained from our Monte Carlo simula-

tions. We find that the Hopkins statistic value at equilibrium from experiment

has a mean value of 0.85 with error bars between 0.82 and 0.89 (Figure 3.18 (b),

red dashed line), while our simulations give a mean of 0.88±0.05. This overlap

indicates similar clustering observed in both our Monte Carlo simulation and ex-

perimentally derived results. In addition, we observe that model resolution does
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not impact the amount of clustering that occurs for DF3, as all of the values con-

verge to the same result, as seen in Figure 3.18.

To verify whether the averaged values are representative of the underlying

clustering, we plot the histograms of the Hopkins statistic values calculated at the

beginning and end of each experiment. These histograms are plotted against a

normal distribution representing uniformly random distributed data to provide

an intuition of the amount of clustering. For each experiment, we performed 30

runs, each contributing 1000 calculations, resulting in a total of 30000 measure-

ments per histogram. The beginning histograms are taken 1000 steps into the

simulation to ensure that the molecules move away from their initial grid state,

which brings bias into the calculation. We see in Figure 3.19 that in the no antigen

experiments, there is no change between the histograms at the beginning of the

experiments (Figure 3.19 (a)) to the histograms at the end of the experiments (Fig-

ure 3.19 (b)), and both histograms are very close to the normal distribution (red

line) indicating no clustering.

However, for DF3, we see (Figure 3.20) that there is a significant shift in the his-

togram from start to end. The beginning of the experiment starts off as a random

distribution (Figure 3.20 (a)). By the end of the experiment, we see a shift in the

histogram away from the red normal distribution line (Figure 3.20 (b)), indicat-

ing clustering in the simulations. We note this shift is consistent for all resolution

models of DF3.

Analysis of Model Quality

We also investigate the impact of model reduction on all-atom aggregate struc-

tures. In order to evaluate this, after aggregates are constructed with low-

resolution polygon models, we construct the corresponding all-atom structure.
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(a) No Antigen (b) DF3

Figure 3.19: Hopkins statistic for an experiment with no antigen. Histograms of
Hopkins values for the beginning of the experiment (panel (a)) and end (panel
(b)) of the experiment on bottom. Red curve indicates a normal distribution, i.e.,
no clustering.

(a) No Antigen (b) DF3

Figure 3.20: Hopkins statistic for an experiment with antigen DF3. Histograms
of Hopkins values for the beginning of the experiment (panel (a)) and end (panel
(b)) of the experiment on bottom. Red curve indicates a normal distribution, i.e.,
no clustering.
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However, since the polygon models are much simpler than the all-atom struc-

tures, there may be unintended interactions. For example, when non-bonded

atoms are too close, repulsion may occur due to van der Waals interactions. In

order to evaluate the possible effects of transitioning from polygon to all-atom

models, we counted the number of Cα atoms and DNP linker carbon rings within

7 Å (lower than the shortest interaction radius of 8Å) for IgE-FcεRI and DF3. For

Pen a 1, distances were calculated between Cα atoms for the aggregated molecules.

In order to indicate these proximal non-binding residues, we refer to them as po-

tential collisions. Also, antigen binding sites are not included in the enumeration.

Table 3.3: Percentage (%) of residues that exhibit a potential collision. Antigen
residues involved in binding are not included.

Antigen Model Percent Reduction
Simulated 0% 50% 75% 90%

DF3 0.0074% 0.0122% 0.0215% 0.1016%
Pen a 1 0.0158% 0.0350% 0.0816% 0.2238%

We can see from the results in Table 3.3 that model resolution has an impact on

the number of potential collisions that exist in aggregate structures. Potential colli-

sion residues increase as resolution decreases. We see that DF3 is not significantly

impacted by model resolution up to 75%. However, at 90%, there is an order of

magnitude increase in potential collisions. We see that Pen a 1 model reduction gen-

erally has a higher percentage of residues in potential collision compared to DF3.

This is attributed to the flexibility of the DF3 binding site. The DNP linker has a

large, relatively open volume that can be bound, while the binding sites of Pen a 1

are smaller in volume since they are on the molecular surface and are partially

occupied by the molecular volume. Therefore, the antibodies have to be closer to

the allergen surface in Pen a 1.
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We note that overall, the number of residues in potential collision is minimal.

Even at 90% reduction for the Pen a 1, aggregates generated have about 0.2%

of residues in potential collision. These interactions could be addressed through

locally evaluated energetics and perturbations.

Rule-Based Modeling Results

So far, we have presented the results of our Monte Carlo simulations for differ-

ent resolutions, which explicitly include geometric effects in aggregate formation.

Rule-based models of aggregate formation, on the other hand, need to encode all

geometric information in the rules of antibody-antigen binding and their bind-

ing/unbinding rate constants.

Our approach is to vary the binding rates to reproduce the aggregate size dis-

tribution at a particular resolution for the General rule set. One way to achieve

this is by doing a multi-parameter optimization of the four binding rate con-

stants. This is especially useful when fitting the model to experimental data. In

Figure 3.21, we compare the aggregate size distribution for the rule-based model

with the values found from the Monte Carlo simulation.

Most of the results shown in Figure 3.21 were obtained by analyzing the rates

via single and two-parameter scans. For the 0% and 50% resolutions, we fixed k f 1

to unity in all runs and performed scans of k f 3 from 0.0 to 1.0 molecule−1s−1 and

k f 2 from 0.0 molecule−1s−1 to k f 3, both at 0.01 intervals. For the 90% resolution,

we fixed k f 1 = k f 2 = k f 3 = 1.0 molecule−1s−1 and varied k f 4 from 0.0 to 0.05

molecule−1s−1 by 0.001 increments. In all cases, the value chosen for the variable

parameter was the one that resulted in the smallest RSS from the Monte Carlo

data. However, it is important to highlight that even though the RSS from the

Monte Carlo data is a reasonable measure of comparison between the two meth-
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Figure 3.21: Comparison of Monte Carlo (Blue) and rule-based model (Red) re-
sults for the General rule set with variable rates for different resolutions. Rates
and RSS values are shown in Table 3.4.

ods, our Monte Carlo data was obtained from 30 independent runs, and addi-

tional runs could change the overall distribution of the histograms, thus changing

the RSS significantly. For this reason, we use this number mostly as a guide and

avoid fitting rates to exactly reproduce the Monte Carlo data.
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The rates listed in Table 3.4 for the 75% resolution were fitted from the trends

of k f 1 = k f 3 = 1.0 molecule−1s−1 and increasing k f 2 and k f 4 for lower resolutions.

They show a sufficiently close result to the Monte Carlo data (Figure 3.21). The

trend of increasing rate values of k f 2 (binding with one nearest neighbor occupied)

and k f 4 (binding with two nearest neighbors occupied) reinforce the intuition that

the volume loss due to resolution reduction impacts the binding of neighboring

regions.

At the 75% resolution, a two-parameter scan for k f 2 and k f 3 yields a slightly

better RSS for k f 2 = k f 3 = 0.12 molecule−1s−1 at fixed k f 1 = 1.0 molecule−1s−1

and k f 4 = 0, which deviates from the parameter trends. This particular result also

seems misleading because at higher resolutions one would expect that k f 1 ≤ k f 3,

due to restrictions on neighbor interactions. However, it is expected that multi-

parameter scans may lead to numerous minima of RSS, thus the best-fit solution

may not be unique.

Table 3.4: Binding and unbinding rate constants and RSS differences for the rule-
based model to capture the aggregate size distributions of different resolutions.

Rate Model Percent Reduction
Value 0% 50% 75% 90%

k f 1 (molecule−1s−1) 1.00 1.00 1.00 1.00
k f 2 (molecule−1s−1) 0.07 0.12 0.50 1.00
k f 3 (molecule−1s−1) 1.00 1.00 1.00 1.00
k f 4 (molecule−1s−1) 0.00 0.00 0.00 0.006

kr (s−1) 0.01 0.01 0.01 0.01
RSS 0.001367 0.002283 0.002731 0.001135
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Flexible Molecular Modeling

The second body of work we present focuses on our efforts modeling molecular

aggregate structures described in [83, 79]. In this chapter we utilize semi-flexible,

reduced-resolution models that describe molecular density. This is different from

our previous model which is fully rigid and only represents the occupied vol-

ume of the structure. Here we discuss our methods for semi-flexible, reduced-

resolution modeling of molecules and how we ascertain molecular conformations

from Cryo EM tilt series. We outline our methods for model construction in Sec-

tion 4.1. We then detail our methods for projection construction and tilt series

fitting in Sections 4.2 and 4.3, respectively. We then present results from fitting

simulated and experimental data in Section 4.4.

4.1 Flexible Molecular Model Construction

Generation of a semi-flexible reduced-resolution model of a molecular system be-

gins with its all-atom molecular structure. This structure is first decomposed into

rigid subunits, which are areas of the molecular structure where atoms remain
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static relative to each other throughout conformation changes. Then, Principal

Component Analysis (PCA) is applied to the subunits of this decomposed model

to simplify the description of the subunits and generate a GMM. Once this is done,

flexibility between rigid regions is added, and the subunits are refined to complete

the model construction. An example of this process applied to the IgE-FcεRI com-

plex (described in Section 2.4) is outlined in Figure 4.1. The resulting model is

then used to fit tomographic tilt series using genetic algorithm (GA) optimization.

Figure 4.1: Process of generating a GMM from an all-atom structure. First, the
all-atom model (top left) is decomposed into rigid subunits (top right). The rigid
subunits are then processed using PCA (bottom left). The results of PCA are used
to construct a GMM (bottom right).
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Flexible model construction begins with identification of the rigid subunits

of the all-atom model through KINARI-Web rigidity analysis [31]. This web

server uses inter-atomic connectivity and interaction information to predict which

groups of atoms are likely to move together in a coordinated fashion. If a contigu-

ous portion of the protein is calculated to be flexible, the sequence of residues

between the rigid subunit termini are identified as a flexible region. If both ter-

mini are associated with the same subunit, the sequence is considered part of that

subunit and reclassified as rigid. If the ends are from different subunits, i.e., a flex-

ible linker, the α-carbons of the amino acids on both termini of the flexible regions

are stored with their associated GMM subunit. For the IgE-FcεRI structure, ten

rigid subunits were classified into five regions outlined in Table 4.1.

Structural Subunit Chain & Residues Region
FcεRI α-subunit 1 A 5-84 1
FcεRI α-subunit 2 A 88-169 1
Constant 1 H 256-355, I 256-355 1
Constant 2a H 364-462 1
Constant 2b I 364-462 1
Constant 3 H 469-571, I 469-571 1
Fab 1 - C terminal H 151-247, L 140-234 2
Fab 1 - N terminal H 21-144, L 26-127 3
Fab 2 - C terminal I 151-247, M 140-234 4
Fab 2 - N terminal I 21-144, M 26-127 5

Table 4.1: IgE-FcεRI subunits calculated from rigidity analysis. A flexible region
is considered part of a rigid region if both ends of the region are associated with
the same structural subunit.

After rigid subunits have been identified, the decomposed subunits are con-

verted into a GMM representation by performing PCA on the atom positions of

each identified subunit structure. PCA analyzes the positions of the atoms in
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a subunit and returns eigenvectors, or principal components, that describe the

spread of the atoms in 3D space. The eigenvalues associated with the compo-

nents represent the amount of variance on a particular axis (Figure 4.1, bottom

left). A rigid subunit is divided into smaller subunits if the ratio between the low-

est and highest eigenvalues of the PCA is high, i.e., if the distribution is more

elliptical than spherical, the subunit is divided. The model used a ratio of 1.8× or

greater as a cutoff for this division. From this criteria subunits 1 and 2 of FcεRI α-

subunit and constant subunits 2a and 2b of the IgE complex were split along their

principle component axis.

Next, the molecular subunits are converted to a GMM description with Gaus-

sian functions centered at the subunit’s atoms mean position µ with standard de-

viation σ. The standard deviation is set to the square root of the largest subunit

eigenvalue (as computed by PCA). This construction method is applied to all sub-

units of the IgE complex, resulting in a model composed of fourteen Gaussian

functions (Figure 4.1, bottom right).

Distance constraints are incorporated into the GMM to represent flexibility

that exists between rigid subunits. Specifically, GMM subunits that are linked

together via flexible portions of the protein backbone have a distance constraint.

The distance between adjacent α-carbon positions of the protein backbone in flex-

ible regions are averaged and stored as a distance, d. To determine the length of

a distance constraint associated with a flexible region, we multiply the number of

amino acids in the flexible region, n, times the average distance d. During simula-

tion, the distance between constrained rigid subunits’ α-carbon positions must be

less than n·d.

There are three major areas of the IgE-FcεRI structure, the constant domain and

the two Fab arms. These three areas are broken down into five rigid regions and

six flexible regions. Fab arms are the structures composed of two subunits con-
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nected by two flexible regions, producing two distance constraints per arm. Each

Fab arm is connected to the constant domain, producing two distance constraints.

This results in six distance constraints total, outlined in Table 4.2.

Class Subunits Chain & Residues Length
Arm Linker Con 1, Fab 1C H 248-255 8
Arm Linker Con 1, Fab 2C I 248-255 8
Fab Short Fab 1C, Fab 1N H 145-150 6
Fab Long Fab 1C, Fab 1N L 128-139 12
Fab Short Fab 2C, Fab 2N I 145-150 6
Fab Long Fab 2C, Fab 2N M 128-139 12

Table 4.2: Flexible regions between rigid antibody subunits. Con 1 represents the
Constant subunit and Fab subunits are labeled “Fab XY”, X being the arm index
(1 or 2) and Y being the termini (N or C). Length is in number of residues in the
flexible region.

4.2 Projection Generation

The main data structures utilized by our method are 2D single-channel density

images from the processed tilt series or generated from projections of the GMM.

Those processed tilt series can originate from experimental data or be simulated

from molecular models. GMM projections are generated by rendering the set of

Gaussian functions from a series of perspectives associated with the tilt series.

Various levels of image- and post-processing are applied to experimentally de-

rived tilt series to prepare the data for fitting. Processing begins with the selection

of molecular structures of interest from a preliminary evaluation of the tilt series

captured by the electron microscope. These selected structures are used to extract

images from the raw tilt series for generation of a 3D reconstruction. The recon-

structed model is filtered using non-local means filtering and truncated at upper

and lower bounds. The remaining density is discretized into bins using histogram
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equalization and used to create a set of images from the same perspectives as the

originating tilt series. These new images are processed using an iterative means

filter and collected together to form the final processed tilt series for fitting.

Simulated tilt series derived from molecular models begin with the creation

of a density map of a given atomic model using Chimera [95]. Since our method

is focused on low resolution fitting, our density maps typically range from 20Å -

40Å. This density map is equivalent to the reconstruction described when process-

ing experimental tilt series. Non-local means filtering, truncation, and histogram

equalization are applied to the density map as previously described, and projec-

tions are generated to create a processed tilt series of the molecular model.

The projections of the GMM conformations are generated with a simple ren-

dering technique for Gaussian functions. Since the density space was discretized,

σ is scaled to render different density values. This technique produces ortho-

graphic images of the conformation, rendering circles dependent on the camera

perspective, subunit Gaussian with µ and σ, and σ-scale values at which to ren-

der densities. Note that the discretization of the density is not necessary for the

method to work; rather this step is due in part to the processing method of the

lower resolution experimental data.

4.3 Tilt Series Fitting

Conformations, or poses, of the GMM are generated and optimized using a GA

to identify a best fit to the provided tilt series (Figure 4.2). The process begins

with creation of an initial set of GMM conformations, also referred to as the initial

population. The individuals of the population have a set of properties, referred

to as their genotype, that can be mutated and altered in an evolutionary fashion.

79



www.manaraa.com

Chapter 4. Flexible Molecular Modeling

In this study, each element in the genotype represents the amount of translation

{x,y,z} or rotation {α,β,γ} applied to a particular IgE-FcεRI subunit. In this case,

the conformation of IgE-FcεRI is encoded in a vector of floating point values to

facilitate the evolutionary operations. The initial population is generated by ran-

domly perturbing the starting conformation of the GMM.

Figure 4.2: Using genetic algorithms to optimize overlap between GMMs and
tilt series. a) Setup: ”genes” are stored in a bit string ”genome”. Fitness is the
overlap measured between the individual and the tilt series. b) Genetic Operations:
Evolutionary operators include single point crossover (red and blue) and mutation
(magenta). c) Example Iteration: The current population is subjected to crossover
(red, blue, green) and mutation (magenta, cyan, orange) to create a new population.
The fittest individual(s) of the new population is passed to the next iteration.
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The GA proceeds by selecting individuals from the current population to

evolve for the next generation of conformations. The GA here uses tournament se-

lection [87], a method where random subsets of the population are put into ”tour-

naments” based on fitness, and the winning individual(s) are subject to crossover

and mutation. Evolution begins with crossover, which creates new conformations

by swapping genes at random points in the genotypes of a pair of individuals.

Crossover is particularly effective when it combines the most optimized parts of

two individuals’ genomes. Evolution continues with mutation occurring at a uni-

form random selection rate. If a gene of an individual is selected for mutation, a

new value for the gene is drawn from a Gaussian distribution. In both mutation

and crossover operations, the validity of the conformation is evaluated by check-

ing for collisions and distant constraint violations before setting the genotype of a

given individual.

Quality of a member of the population is determined by a fitness function

that compares projections of the GMM conformation to the tilt series and finds

the correspondence between the two sets. Since our main data structures is a

2D single-channel density image, we compare the pixel values of the projections.

Projections of the GMM are generated from corresponding perspectives in the tilt

series as previously described and are compared as seen in Figure 4.3. The overlap

between GMM projections and tilt series images are evaluated by aligning the

images and determining the Jaccard similarity coefficient, a generalized form of

intersection over union evaluation, for the corresponding pixels:

J(x, y) = ∑i min(xi, yi)

∑i max(xi, yi)
(4.1)
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For each pair of corresponding pixels (xi, yi), the minimal pixel value is di-

vided by the maximal pixel value, returning a value between 0.0 and 1.0, with

higher values representing higher similarity. The average of these quotients across

all images in the tilt series is returned as the measure of overlap between the two

projections.

Figure 4.3: Comparison of tilt series to evaluate overlap score. Molecular data
(top le f t) and GMM (bottom le f t) orthogonally projected at angles {-60,0,60}
(top/middle rows, right). Projections from the same perspective are overlaid and
evaluated for overlap (bottom row, right).

The population is monitored over the course of the optimization to prevent the

GA from converging to a local minima. This is detected when the population fit-

ness does not show improvement over consecutive iterations. If a local minima is

detected, the worst performing subunit of the model is targeted for improvement.

During these subsequent iterations, the evolutionary operations are performed

only on the genes of worst performing subunit to force the GA to explore alterna-

tive conformations.
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4.4 Experiments

4.4.1 GA Fitting Analysis on Simulated Single Molecules

The performance of the GA was first evaluated on a single IgE-FcεRI molecule

by fitting randomly generated GMM conformations to simulated tilt series of the

native conformation. Experiments used single axis projection sets with rotation

performed about the Y-axis. These sets were generated from [-45◦, 45◦], [-60◦, 60◦]

and [-90◦, 90◦] angle ranges, respectively representing 90◦, 120◦ and 180◦ of total

range. We chose the two narrower ranges due to their experimental relevancy and

the widest range was used to represent the theoretical limit of capturing a single

axis tilt series. Projections were generated every 3◦ based on typical experimental

conditions. The molecule was oriented either parallel or perpendicular to the axis

of rotation as seen in Figure 4.4.

Figure 4.4: Simulated tilt series conformations parallel (left) and perpendicular
(right) relative to the tilt series axis.

A 30 Å density map of the default antibody conformation was processed using

the technique previously described to prepare tilt series for fitting (Section 4.2).

The density map was truncated at density values 0.781 and 0.004 (value selec-
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tion based on a normalized density map), discretized into 3 bins using histogram

equalization, and then had a Gaussian blur applied with σ = 5 based on Å phys-

ical units. Collision was detected using a σ-scale value of 1.5 and a distance-per-

residue d of 3.5 Å was used for distance constraints. Variation in the initial confor-

mations of the GMM was modeled by randomly sampling new Fab arm positions.

One hundred experiments of each angle range in both parallel and perpendicular

oriented data sets were performed. Each experiment ran for five hundred itera-

tions, as shown in Figure 4.5.

(a) Scores (b) Change in Score

Figure 4.5: Evaluation of convergence for the GA optimization. The average of
and change in overlap score was evaluated for six simulated single molecule tilt
series. All data sets had similar maximum overlap scores and converged at ap-
proximately the same time step.

After new populations were created using selection and crossover, all of the

individuals were evaluated for mutation. During mutation, every gene of an in-

dividual, i.e., {x, y, z} and {α, β, γ}, had a 10% probability its value would be per-

turbed using a Gaussian distribution with µ = 0 and σ = 2.0.

Overlap scores were monitored over each iteration using an improvement cri-

teria and iteration interval. The population was considered to be in local minima

if scores did not improve by at least ε after ∆ iterations, where ε = 0.005 and
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∆ = 10. To escape the local minima, the genes which corresponded to the worst

performing subunit were identified and targeted for refinement until the score im-

proved. These worst performing subunit was identified as the subunit which had

the lowest individual overlap score. During these iterations, the mutation rate

was increased 4-fold to account for the smaller number of genes in the targeted

region.

Final conformations of the single molecule fittings were evaluated for quality

by measuring the distance relative to the known native conformation via subunit

Root Mean Square Deviation (RMSD). In this instance, RMSD was evaluated as a

distance between the GMM positions. The RMSD provides a measure of quality

external to the GA by comparing the relative distances of corresponding subunits

in the final and native conformations. A cutoff distance of 1.0 nm (determined

from subunit RMSD distributions) was used to determine if a given subunit was

properly placed. Average RMSD values are reported in Table 4.3, and the number

of properly located subunits per tilt series is shown in Figure 4.6.

Subunit RMSD (Å)
Tilt Series Parallel Perpendicular

90◦ 17.23 ± 3.02 15.76 ± 2.34
120◦ 16.28 ± 3.03 14.85 ± 2.56
180◦ 14.50 ± 2.84 13.64 ± 2.58

Table 4.3: Average RMSD ( Å ) with standard deviations of the fitted GMM con-
formations to the native GMM conformation across varied angle ranges of the tilt
series imaged parallel and perpendicular to the axis of rotation.

In Table 4.3, the average values of RMSD decrease as total angle range in-

creases. While the standard deviation indicates an overlap between angle ranges,

the overall change in value supports the idea that fitting quality is potentially
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being enhanced by greater visibility provided by a larger range of angles. This

trend is reinforced in Figures 4.6(a) and 4.6(c), where the larger angle ranges have

the most correctly placed subunits (14 total) in the entire IgE molecule. Figures

4.6(b) and 4.6(d) show little variation in the number of correctly placed subunits

between angle ranges, implying that the left skew in 4.6(a) is due to misplaced

subunits of the constant domain. This implication is reinforced in Figure 4.6(c),

where there are very few fits with less than 10 correctly placed subunits, i.e., the

constant domain not being properly placed. This figure shows that the perpendic-

ular tilt series of the IgE molecule generally had more correctly placed subunits

and thus higher quality fits than the parallel tilt series. This is attributed to the

fact that although the parallel pose had intuitively better conditions to model the

arm differences, the perpendicular pose was able to produce better fits due to a

stronger description of the constant domain.

These results show that high overlap scores from the fittest individuals may

still result in misplaced subunits. These misplacements are due to the design of

the GA, which is only concerned with maximizing the value of the fitness func-

tion, i.e., the overlap between projections and the tilt series. For example, initial

conformation sampling may result in two subunits starting off with their posi-

tions swapped, particularly in the Fab arms. As the GA evolves, the positions

of the subunits are refined until the upper limit of the distance constraints are

reached. This example accounts for many cases in Figure 4.6 (c) and (d) where

none or only two of the Fab arm subunits were placed correctly. If only two are

correctly placed, typically a Fab arm is flipped. If none are correctly placed, the

Fab arms may have completely swapped positions or both arms are flipped.
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(a) Parallel - All Subunits (b) Parallel - Fab Arm Subunits

(c) Perpendicular - All Subunits (d) Perpendicular - Fab Arm Subunits

Figure 4.6: Histograms of the percentage of subunits placed correctly. Figures a
and b represent the parallel tilt series, while c and d represent the perpendicular
tilt series.

4.4.2 Single Molecule Reconstruction Analysis

All-atom model reconstruction was performed on the final conformations of the

single molecule tilt series fits to measure the effectiveness of the method at creat-

ing feasible all-atom structures. GMM conformations were reconstructed by plac-

ing the rigid molecular subunits modeled by a GMM into their fitted positions and

orientations. Modeller [30] was then used to generate the flexible loop structures
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between GMM subunits. The reconstructions were evaluated using violations re-

ported by Modeller in major constraints such as bond length, bond angle, and

soft sphere overlap. Similar to the overlap score reported by the GA, the violation

metrics are not dependent on knowledge of native conformations or reconstructed

density maps.

Candidate structures were found by analyzing the percentages of reported

constraint violations in the reconstructions. Figure 4.7 reports the ten conforma-

tions with the lowest average number of violations for each tilt series and angle

range. Conformations with lower ratios of violations to constraints are considered

higher quality. This figure shows that within these top ranked conformations, the

ratios of constraint violations in each ranked conformation typically decrease as

the angle range increases, in our case more so for the parallel conformation than

the perpendicular. This is consistent with previous observations that greater visi-

bility as provided by larger ranges of angles leads to higher quality conformations.

(a) Parallel Tilt Series (b) Perpendicular Tilt Series

Figure 4.7: The red, orange, and yellow segments are the percentage of violations
of all constraints for bond lengths, bond angles and soft sphere overlaps, respec-
tively. The leftmost bar in each rank cluster is the 90◦ angle range, 120◦ is the
middle bar, and 180◦ is the rightmost bar.
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The results of the violation analysis were investigated by comparing the over-

lap scores, density map cross correlation, and subunit placement of the top ten

conformations and the rest of the population. Figures 4.8 and 4.9 visualize the

performance of the top ten conformations in these metrics in the parallel and

perpendicular single molecule tilt series, respectively. The values in the overlap

score histograms differ only slightly from the line representing average score of

each distribution, but are typically above. The top ten conformations are scattered

throughout and do not show any clustering in any angle range or tilt series. This

indicates there is some association between overlap score and conformation qual-

ity, but it is more so a measure of GA progress. Cross correlation scores in both

tilt series exhibit the same improvement as the angle range increases, and the top

ten conformations typically have cross correlation scores above average, similar to

what was seen in overlap score. Nearly all top ten conformation in each tilt series

have one hundred percent correct subunit placement, and that amount improves

as the angle range increases.

From the top ten candidate conformations for each tilt series and angle range,

one candidate was selected to be the representative sample based on the calcu-

lated scores. These selected candidates were reconstructed and displayed in Fig-

ure 4.10. Overall, the top conformation for each tilt series and angle range have

high cross correlation, similar overlap score, low violation percentage and high

subunit placement rankings. Overlap score and cross correlation metrics empha-

size quality of fit with the data, whereas violation percentage emphasizes confor-

mational validity. These results showed that the conformations with the lowest

percentage of Modeller violations match the true conformation of the molecule

in the tilt series, especially when larger angle ranges are used, and certain con-

formation orientations are better than others for tilt series fitting. Note, subunit

placement cannot be applied to experimental data since the true conformation of

the imaged structure being fit is not known.
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90◦ 120◦ 180◦

Figure 4.8: Performance of the ten conformations with the least percentages of
Modeller violations in the parallel single molecule tilt series. From left to right
are the 90◦, 120◦, and 180◦ angle ranges. From top to bottom are overlap score
(green), cross correlation with density model (blue), and percentage of correctly
placed subunits (purple). Top performing conformations are visualized as the
lighter colored bars in each plot. The average overlap scores and average cross
correlations are represented as horizontal lines in the first two rows of plots.
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90◦ 120◦ 180◦

Figure 4.9: Performance of the ten conformations with the least percentages of
Modeller violations in the perpendicular single molecule tilt series. From left to
right are the 90◦, 120◦, and 180◦ angle ranges. From top to bottom are overlap
(green), cross correlation with density model (blue), and percentage of correctly
placed subunits (purple). Top performing conformations are visualized as the
lighter colored bars in each plot. The average overlap scores and average cross
correlations are represented as horizontal lines in the first two rows of plots.

91



www.manaraa.com

Chapter 4. Flexible Molecular Modeling

(a) Parallel Tilt Series

(b) Perpendicular Tilt Series

Figure 4.10: All-atom reconstructions of the top candidates. Parallel tilt series ex-
periments are shown in (a) and perpendicular in (b). In both (a) and (b), top can-
didates displayed left to right are 90◦, 120◦, and 180◦ angle ranges, respectively.
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4.4.3 Simulated Aggregate Tilt Series Fitting

The performance of the GA was next evaluated by fitting an antibody-antigen ag-

gregate generated using a Monte Carlo-based method [84]. The aggregate struc-

ture contains three IgE-FcεRI molecules and two DF3 molecules. Performing

GMM construction on DF3 resulted in a single subunit structure.

Figure 4.11: (le f t) The molecular structure of synthetic antigen DF3 (tan). The
fibritin trimer has 3 DNP linkers (red, green and blue) attached to the N-termini
of trimer subunits. (right) Aggregate structure used to evaluate tilt series fitting.
The aggregate is composed of 2 DF3 antigen (tan) and 3 IgE antibodies (blue)

Randomly generated conformations of the aggregate structure were sampled

and then fit to a [-45◦, 45◦] angle range tilt series with an increment of 3◦ of its

native aggregate density map, representing 90◦ of total range. This angle range

was chosen for its experimental relevancy, as tilt series with smaller ranges are

less costly and are likely to make up the majority of experimental data sets. IgE

were sampled using the same scheme described in Section 4.4.1, where as DF3 had

their position randomly sampled within a 1 nm cube of the default conformation.

Figures 4.12(a) and 4.12(b) show convergence within one thousand iterations for

each of 300 runs of aggregate fitting.
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(a) Aggregate Scores (b) Aggregate Score Convergence

(c) Correctly Placed Subunits (d) Modeller Violation Percentages

Figure 4.12: a.) Evaluation of scores for GA optimization of aggregate containing
3 IgE-FcεRI and 3 DF3 molecules. 300 runs were analyzed. b.) Convergence
analysis of the aggregate fitting scores. c.) Correct subunit placement historgram
for 300 aggregate fittings. d.) The red, orange, and yellow segments are the ratios
of violations to constraints for bond lengths, bond angles and soft sphere overlaps,
respectively, for the top 10 scoring conformations.

Final aggregate GMM conformations were evaluated for quality by measuring

the RMSD between the GMM and the native conformation. The average RMSD

of the 300 aggregate fittings was 20.41 Å ± 4.05 Å. The same cutoff distance of 1.0

nm was used to determine if a given subunit was properly placed. The number of

properly located subunits in the whole aggregate is shown in Figure 4.12(c).

94



www.manaraa.com

Chapter 4. Flexible Molecular Modeling

The IgE-FcεRI and DF3 aggregate had a total of 44 subunits - 2 DF3, 30 IgE base

(10x3), and 12 IgE Fab Arm (4x3). Figure 4.12(c) shows that majority of the fittings

placed between 30 and 35 out of 44 subunits correctly, but no fitting achieved over

40 subunits. Fits of this quality were expected based on the complexity of the fit-

ting problem. This complexity arises from the number of subunits being fit, the

amount of subunit overlap in the tilt series, and the potential to swap subunit lo-

cations during initial conformation sampling as described in the end of Section

4.4.1. All-atom reconstruction was performed on each of the final fitted aggregate

conformations as described in Section 4.4.2. Violation percentages from the top 10

best fit aggregate conformations are shown in Figure 4.12(d). Percentages of vio-

lations of reconstructed candidates are higher for this data set than in either of the

single molecule tilt series, but this was expected due to the number of molecules

in the aggregate and complexity of the fitting problem.

Performance of the aggregate fittings in overlap score, cross correlation with

density model, and correctly placed subunits were similar to those shown in Fig-

ures 4.8 and 4.9. Higher cross correlation scores and correctly placed subunits

are associated with conformations with fewer violations. The selected aggregate

shown in Figure 4.13 is the best fit based on violation percentage. This aggregate

candidate provides a good fit with only 4 of the 44 subunits out of place. The

highest RMSD of a single subunit found was 15.0 Å. This result further confirms

the hypothesis that reconstruction violations are a valid final indicator of confor-

mational quality.
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Figure 4.13: Top selected candidate from aggregate fittings. Front perspective
(left) and top perspective (right) show that a vast majority of the subunits are
correctly placed. Only 4 of the 44 subunits were found to have an RMSD > 10.0
Å. The maximum RMSD of a single subunit was 15.0 Å.

4.4.4 Experimental Data Fitting

Experimental tilt series of unbound IgE-FcεRI were captured using a Titan Krios

by our collaborators at Sanford Burnham Prebys Medical Discovery Institute.

Data was collected from an angle range of [-45◦, 45◦] in 3◦ intervals, resulting in a

tilt series of 31 images. The tilt series was processed using the methods described

in Section 4.2. Initial and processed density maps are shown in Figure 4.14

Figure 4.14: Experimental conformation of a single IgE captured by our collabo-
rators (left) and the conformation after post processing (right).
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Fitting of the processed tilt series began with a rigid body fit of the all-

atom model to the reconstruction to find a default conformation for fitting using

Chimera [95]. This default conformation was subjected to the sampling scheme

described in Section 4.4.1 to create initial conformations for fitting. The same an-

tibody model, GA setup, local minima detection parameters, and experimental

volume and length also defined in Section 4.4.1 were used. All-atom model re-

construction was performed on the final conformations (as described in Section

4.4.2). Convergence and reconstruction violation results of these runs are shown

in Figure 4.15.

(a) Scores (b) Convergence (c) Violation Percentage

Figure 4.15: a.) Evaluation of scores for GA optimization of an experimental tilt
series. 100 runs were analyzed. b.) Convergence analysis of the experimental
tilt series fitting scores. c.) The red, orange, and yellow segments are the ratios of
violations to constraints for bond lengths, bond angles and soft sphere overlaps,
respectively for the top 10 scoring conformations of the experimental tilt series.

Since RMSD is not available for experimentally imaged structures, candidates

for the conformation with a best fit were found by analyzing a combination of

metrics including overlap score, value of cross correlation with the density map,

and reconstruction violations. Figure 4.16 displays three conformations that high-

light differences between conformations selected with an emphasis on individual

metrics.
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Figure 4.16: Top selected candidates from experimental fitting. The different re-
constructions represent an emphasis on a particular metric for evaluation includ-
ing overlap score (le f t), cross correlation value (center) and reconstruction viola-
tions (right). The axis of rotation is displayed below the conformations.

When an emphasis is placed solely on overlap score, conformations tend to

overfit the tilt series and generate conformations with low regard for reconstruc-

tion violations (Figure 4.16, le f t). This is reinforced when looking at the all atom

reconstruction from the perspectives of the tilt series. The best conformation based

on overlap score is shown from different tilt series perspectives in the top row of

Figure 4.17. At the perspective at -45◦ (le f t column), it is clearly seen that the other

two conformations (middle and bottom rows) allow for the α-subunit of FcεRI (red

atoms) to protrude out of the density description. This makes sense since over-

lap score emphasizes the highest possible overlap in all perspectives rather than

conformational validity.

Conformations fit the density map better when focusing on cross correlation

(Figure 4.16, center). The impact of the emphasis on cross correlation is seen look-

ing at the candidate selected (Figure 4.17, middle row). This candidate has a worse

fit at the -45◦ perspective than the overlap score candidate (top row), but a better

fit in the 45◦ perspective. However, there is no guarantee that the density map
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is a completely accurate representation of the molecule due to the previously de-

scribed issues with reconstruction evaluation in Section 2.3.1, e.g., stretching due

to the missing wedge problem.

Reconstruction violations are a great indicator for structural validity and, un-

like the previous two metrics, this metric is not dependent on conformational fit-

ness. It is much easier to filter preliminary conformations using reconstruction vi-

olations as the primary metric (Figure 4.16, right) because of these reasons. In the

bottom row of Figure 4.17 at -45◦ (le f t column) there is a similarity in the FcεRI α-

subunit conformation to the cross correlation candidate (red atoms, middle and

bottom rows), but the constraint violations candidate had better overlap. All can-

didates look similar at 0◦ (Figure 4.17, center column), but at 45◦ the one based on

constraint violations appears to have the lowest overlap (bottom right). It follows

that overlap is lower when considering violation constraints because those confor-

mations are not as extreme, e.g., linkers are not stretched to full length, subunits

are not in close proximity, etc. For candidates of the other two metrics, conforma-

tional validity is only based on the GMM, which is a more relaxed description of

the linker than an all-atom reconstruction.
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Figure 4.17: All-atom reconstructions viewed at tilt series perspectives. Best can-
didates selected by overlap score, cross correlation value and constraint violations
are shown (top, middle and bottom rows, respectively). Tilt series perspectives
from −45◦ are displayed in the left column, from 0◦ in the middle, and from 45◦

in the right.
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Conclusions and Future Work

The research presented here describes multi-resolution simulation and analysis

techniques that enable the modeling of large molecular structures and their inter-

actions. The focus of the work is on the IgE antibody aggregation problem, an

assembly process associated with the human allergy immune response. We com-

bined both computational geometry and statistical techniques to generate molec-

ular models that were more efficient to simulate and increased the breath of anal-

ysis modeling the system at multiple levels of detail. We use our methods to

understand how allergen structure and valency impact antibody aggregation. In

our effort to study geometric packing of large protein complexes, we developed

a rigid body aggregation model and investigated the impact of model resolution

on aggregate formation and clustering. In a second body of work, efforts to study

the allergic mechanisms were pursued developing flexible molecular models to fit

experimentally collected aggregate structures.

In our rigid body modeling work, we focused on developing methodologies

for simulating and analyzing aggregate formation. In developing simplified mod-

els based on experimentally derived data, we were able to study aggregate forma-
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tion and packing structures under biologically-relevant conditions. The method

was used to study how ligand valency impacts aggregation by comparing 2 simi-

larly sized antigen, bivalent DCT2 and trivalent DF3. In the interest of improving

computational performance while preserving packing structures, we examined

simulations with lower resolution models. We evaluated the impact that model

reduction had on our simulation, both in terms of evaluation time and model qual-

ity. Our analysis showed that time always decreased with lowered levels of reso-

lution and in certain circumstances, a loss in resolution did not affect the results.

We performed a clustering analysis of the DF3 aggregation at different resolutions

to compare with experimental data and were able to reproduce the experimental

Hopkins statistic metric of cluster formation at all resolutions.

To further our investigation of rigid body model resolution reduction, we uti-

lized RBM to quantify the impact of model resolution on simulation quality. We

built RBMs that reflect steric constraints due to molecular conformation allow-

ing us to examine differences in aggregate formation across resolutions. It was

shown that model resolution has negligible impact on DF3, and minimal impact

on Pen a 1. This was attributed to the geometric nature of the proteins being af-

fected by volume reduction (globular vs rod-like shapes). These results informed

us how to tailor the amount of reduction applied to the molecular structures be-

ing modeled. Surface/volumetric analysis is necessary to ensure our model con-

struction/reduction appropriately capture molecular topology when dealing with

more complex molecular structures.

In our flexible molecular modeling work, we presented a method for fitting of

GMM models to projections from tomographic tilt series. The intended goal of

this work was to enable the fitting of models to experimentally collected aggre-

gate structures. GMM representations of models of the IgE-FcεRI complex and

antigen DF3 were used to directly fit tilt series projections and we evaluated the
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method’s ability to perform flexible fitting using GA optimization. We performed

three evaluations, fitting tilt series from a simulated single antibody model, an

aggregate model and an experimental data set. We were able to conclude that the

method was able to reconstruct all-atom models directly from tilt series. While

visual obstruction can prove challenging, fitting tilt series with flexible structures

is possible even with small angle ranges. Different metrics were shown to provide

different fits, therefore implementing additional metrics should provide alterna-

tive candidates. These measurements, which may be more expensive, e.g., confor-

mational free energy, can provide alternative metrics for candidate evaluation. We

showed that our method is capable of fitting low resolution (20Å - 40Å) tilt series

directly. This is an improvement over standard methods which would have to fit

a low resolution reconstructed density map with a highly detailed atomic model.

Standard methods are great with high resolution data, but without enough infor-

mation about the molecular conformation these methods run into problems with

overfitting and structural distortions.

A variety of extension to these works are viable areas for development. When

considering rigid body modeling, aggregation dictates how the immune systems

responds to a given threat. Extension of this work could be used as a predic-

tion tool for allergen response severity given an the allergens size/valency. An-

other extension could focus on antigen structure modification that could be used

to treat hypersensitivity. Antigen structural modification along with aggregation

simulation analysis can be used to understand how to effectively neutralize the re-

sponse of a given allergen e.g., the introduction of binding competitors or design

of hyper-allergenic products.

For future work in our flexible GMM model, we believe an elastic constraint

could be incorporated into the existing distance constraint for loops connecting

subunits. Even though loop constraint evaluation during simulation would in-
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crease with this change, extreme distances would be relaxed over time. This

would help in instances where multiple loops connect subunits; for example, the

loops connecting the Fab arm termini in our antibody model. Alternative GMM

density models, e.g., full model density map vs subunit density map normaliza-

tion, can also be used to fine tune the fitting process. Another feature that would

make the method much more efficient would be to adapt the solution to GPU

(graphics processing unit) based computation. The problem of image fitting is

naturally positioned to take advantage of the specialty GPU hardware and could

enable the generation of significantly more candidate structures given the same

wall time.
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Table A1: Rule Set for Strand I (TI) of Pen a 1 in pseudo BioNetGen language
format. Letters in parentheses represent free binding sites. ’IgE’ in parentheses
represent occupied binding sites with the subscript indicating which site is occu-
pied. Omitted letters represent binding sites not included in the rule (can be free
or occupied). Dissociations are addressed with complementary rules (not shown),
with rates kr = 0.01 s−1.

Binding Reaction Binding
Site Rule Rate
A TI(A,B) + IgE→ TI(IgEA,B) k f 1

TI(A,IgEB) + IgE→ TI(IgEA,IgEB) k f 2
B TI(A,B,C,D) + IgE→ TI(A,IgEB,C,D) k f 1

TI(IgEA,B,C) + IgE→ TI(IgEA,IgEB,C) k f 2
TI(A,B,IgEC) + IgE→ TI(A,IgEB,IgEC) k f 2
TI(A,B,C,IgED) + IgE→ TI(A,IgEB,C,IgED) k f 3
TI(IgEA,B,IgEC) + IgE→ TI(IgEA,IgEB,IgEC) k f 4

C TI(B,C,D,E,F) + IgE→ TI(B,IgEC,D,E,F) k f 1
TI(IgEB,C,D) + IgE→ TI(IgEB,IgEC,D) k f 2
TI(B,C,IgED) + IgE→ TI(B,IgEC,IgED) k f 2
TI(B,C,D,IgEE) + IgE→ TI(B,IgEC,D,IgEE) k f 3
TI(B,C,D,E,IgEF) + IgE→ TI(B,IgEC,D,E,IgEF) k f 3
TI(IgEB,C,IgED) + IgE→ TI(IgEB,IgEC,IgED) k f 4

D TI(B,C,D,E,F) + IgE→ TI(B,C,IgED,E,F) k f 1
TI(IgEC,D,E,F) + IgE→ TI(IgEC,IgED,E,F) k f 2
TI(C,D,IgEE) + IgE→ TI(C,IgED,IgEE) k f 2
TI(C,D,E,IgEF) + IgE→ TI(C,IgED,E,IgEF) k f 2
TI(IgEB,C,D,E,F) + IgE→ TI(IgEB,C,IgED,E,F) k f 3
TI(IgEC,D,IgEE) + IgE→ TI(IgEC,IgED,IgEE) k f 4
TI(IgEC,D,E,IgEF) + IgE→ TI(IgEC,IgED,E,IgEF) k f 4

E TI(C,D,E,F) + IgE→ TI(C,D,IgEE,F) k f 1
TI(IgED,E,F) + IgE→ TI(IgED,IgEE,F) k f 2
TI(IgEC,D,E,F) + IgE→ TI(IgEC,D,IgEE,F) k f 3
TI(E,IgEF) + IgE→ TI(IgEE,IgEF) k f 4

F TI(C,D,E,F) + IgE→ TI(C,D,E,IgEF) k f 1
TI(IgED,E,F) + IgE→ TI(IgED,E,IgEF) k f 2
TI(IgEC,D,E,F) + IgE→ TI(IgEC,D,E,IgEF) k f 3
TI(IgEE,F) + IgE→ TI(IgEE,IgEF) k f 4
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Table A2: Rule Set for Strand II (TI I) of Pen a 1 in pseudo BioNetGen language
format. Letters in parentheses represent free binding sites. ’IgE’ in parentheses
represent occupied binding sites with the subscript indicating which site it occu-
pies. Omitted letters represent binding sites not included in the rule (can be free
or occupied). Dissociations are addressed with complementary rules (not shown),
with rates kr = 0.01 s−1.

Binding Reaction Binding
Site Rule Rate
A TI I(A,B,C) + IgE→ TI I(IgEA,B,C) k f 1

TI I(A,IgEB) + IgE→ TI I(IgEA,IgEB) k f 2
TI I(A,B,IgEC) + IgE→ TI I(IgEA,B,IgEC) k f 3

B TI I(A,B,C,D) + IgE→ TI I(A,IgEB,C,D) k f 1
TI I(IgEA,B,C) + IgE→ TI I(IgEA,IgEB,C) k f 2
TI I(A,B,IgEC) + IgE→ TI I(A,IgEB,IgEC) k f 2
TI I(A,B,C,IgED) + IgE→ TI I(A,IgEB,C,IgED) k f 3
TI I(IgEA,B,IgEC) + IgE→ TI I(IgEA,IgEB,IgEC) k f 4

C TI I(A,B,C,D) + IgE→ TI I(A,B,IgEC,D) k f 1
TI I(IgEB,C,D) + IgE→ TI I(IgEB,IgEC,D) k f 2
TI I(B,C,IgED) + IgE→ TI I(B,IgEC,IgED) k f 2
TI I(IgEA,B,C,D) + IgE→ TI I(IgEA,B,IgEC,D) k f 3
TI I(IgEB,C,IgED) + IgE→ TI I(IgEB,IgEC,IgED) k f 4

D TI I(B,C,D,E,F) + IgE→ TI I(B,C,IgED,E,F) k f 1
TI I(IgEC,D,E,F) + IgE→ TI I(IgEC,IgED,E,F) k f 2
TI I(C,D,IgEE) + IgE→ TI I(C,IgED,IgEE) k f 2
TI I(C,D,E,IgEF) + IgE→ TI I(C,IgED,E,IgEF) k f 2
TI I(IgEB,C,D,E,F) + IgE→ TI I(IgEB,C,IgED,E,F) k f 3
TI I(IgEC,D,IgEE) + IgE→ TI I(IgEC,IgED,IgEE) k f 4
TI I(IgEC,D,E,IgEF) + IgE→ TI I(IgEC,IgED,E,IgEF) k f 4

E TI I(D,E,F) + IgE→ TI I(D,IgEE,F) k f 1
TI I(IgED,E,F) + IgE→ TI I(IgED,IgEE,F) k f 2
TI I(E,IgEF) + IgE→ TI I(IgEE,IgEF) k f 4

F TI I(D,E,F) + IgE→ TI I(D,E,IgEF) k f 1
TI I(IgED,E,F) + IgE→ TI I(IgED,E,IgEF) k f 2
TI I(IgEE,F) + IgE→ TI I(IgEE,IgEF) k f 4
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with rrt-like algorithms. In 2007 IEEE International Conference on Robotics
and Automation, pages 3301–3306, April 2007.
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